homehome Home chatchat Notifications


Ants follow Fermat's principle of least time

If you know your physics (or optics, to be more specific), you’ve probably heard a lot about Fermat’s principle (or the principle of least time). Basically, what it states is that the path taken between two points by a ray of light is the path that can be traversed in the least time. A ray […]

Mihai Andrei
April 2, 2013 @ 8:04 am

share Share

If you know your physics (or optics, to be more specific), you’ve probably heard a lot about Fermat’s principle (or the principle of least time). Basically, what it states is that the path taken between two points by a ray of light is the path that can be traversed in the least time. A ray of light will always travel from A to B on the path which takes the least time, or other put, it will follow the fastest, not shortest path. Ok, so where do ants come in?

ant1

Well, apparently, ants follow Fermat’s principle as well. This is an issue when ants are forced to travel on two different surfaces, where they walk faster on one than the other. As this new study showed, in this kind of situation ants behave… just like light does.

Jan Oettler and his team, which included members from China, Germany and France compared the paths ants follow compared to those followed by ligh in the same conditions. The scientists experimentally studied the behavior of the little fire ant, Wasmannia auropunctata, one of the world’s 100 most invasive species.

They took several colonies of ants, put them in boxes and placed food in the corner opposite from the entrance. The surface of each foraging arena was split in half, and each half was covered by a different material; here, researchers used several different materials which differently affected the ants’ movement speed: rough polyester felt (1.73 mm/s), smooth polyester felt (2.97 mm/s), and polyethylene glass (4.89 mm/s).

ant2

So given the geometry of the setting and the ants’ movement speeds on the different materials, they handily calculated the trajectory which they would follow if they acted according to the Fermat principle. The researchers found that the ants’ paths closely matched those predicted – and the ants knew way better than taking the shortest path.

“We found that a general rule applies to a dynamic system that relies solely on communication (pheromones) and social cooperation,” Oettler told Phys.org. “This system depends on two features. One is routing information that decays over time and needs to be refreshed, thus making the system flexible. And second on behavioral flexibility by the worker ants that carry this information. A path can only be adjusted by worker ants that do not follow this path, but rather take alternative routes (that they advertise), which may be faster (or slower) than the already established path.”

Researchers note that humans also follow Fermat’s principle – the most notable example being a lifeguard, that instinctively follows the shortest beach + water path to reach the drowning swimmer. But this is only the first step in a complex journey, which aims to understand the complex processes which govern ant movements in different conditions.

“We have only shown the outcome of this process,” Oettler said. “In the future we want to study the dynamics of the trail pheromones, their active compounds and evaporation rates. We want to perform behavioral tests with synthetic compounds and detect perception thresholds of individual ants. We also want to study the early dynamics of trail formation over time.”

Read the full article here

share Share

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

Your breath can tell a lot more about you that you thought.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

This Self-Assembling Living Worm Tower Might Be the Most Bizarre Escape Machine

The worm tower behaves like a superorganism.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Scientists Created an STD Fungus That Kills Malaria-Carrying Mosquitoes After Sex

Researchers engineer a fungus that kills mosquitoes during mating, halting malaria in its tracks

Scientists Made a Battery Powered by Probiotics That's Completely Biodegradable

Scientists have built a battery powered by yogurt microbes that dissolves after use.

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

These Bacteria Exhale Electricity and Could Help Fight Climate Change

Some E. coli can survive by pushing out electrons instead of using oxygen

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.