homehome Home chatchat Notifications


ISS's Alpha Magnetic Spectrometer is like an LHC in space - already boasting fantastic results

Alright, the analogy might not be the best. The Large Hadron Collider is a high energy particle accelerator, while the Alpha Magnetic Spectrometer is a state of the art particle detector, which traps high-energy charged particles called cosmic rays and analyzes them. You see, the AMS can practically perform the same functions as the LHC, only the high […]

Tibi Puiu
July 26, 2012 @ 2:01 pm

share Share

Alright, the analogy might not be the best. The Large Hadron Collider is a high energy particle accelerator, while the Alpha Magnetic Spectrometer is a state of the art particle detector, which traps high-energy charged particles called cosmic rays and analyzes them. You see, the AMS can practically perform the same functions as the LHC, only the high energy particles don’t need to be created – they’re harvested from nature, detecting high-energy particles “from the source”, which might eventually lead to tantalizing signs of dark energy or dark matter. In many respects, the AMS is better for science than the LHC, despite both are currently indisputable and dependent from one another.

The Alpha Magnetic Spectrometer, as a project, has been in the works for nearly two decades. After a number of delays, budget cuts and the likes, the seven-tonne giant was launched into space about Endeavour, the last shuttle mission, where it docked with the ISS as module some 18 months ago.

“It took more than 35 missions to build the International Space Station – very complicated space shuttle flights – to construct this incredible laboratory in space,” said Endeavour mission commander Mark Kelly told

“When we installed AMS, that was the last piece of the ISS, then the space station was complete. This is really the pinnacle of the science that ISS will do, in my opinion the most significant experiment we have on board.”

AMS – the pinnacle of space science

In fact the AMS was the last planned part of the International Space Station, making it fully complete after many years and resources invested. Last but not least, that is, as the AMS is the largest and most important experiment in space ever. Since it went into operation, the AMS has so far gathered some 18 billion “cosmic ray”; some of these might hold the key to unraveling the Universe’s mysteries.

Transition Radiation Detector determines highest-energy particle velocities  Silicon Trackers follow particle paths; how they bend reveals their charge  Permanent Magnet is core component of AMS and makes particles curve  Time-of-flight Counters determine lowest-energy particle velocities  Star Trackers scan star fields to establish AMS's orientation in space  Cerenkov Detector makes accurate velocity measurements of fast particles  Electromagnetic Calorimeter measures energy of impacting particles  Anti-coincidence Counter filters signal from unwanted side particles

Transition Radiation Detector determines highest-energy particle velocities
Silicon Trackers follow particle paths; how they bend reveals their charge
Permanent Magnet is core component of AMS and makes particles curve
Time-of-flight Counters determine lowest-energy particle velocities
Star Trackers scan star fields to establish AMS’s orientation in space
Cerenkov Detector makes accurate velocity measurements of fast particles
Electromagnetic Calorimeter measures energy of impacting particles
Anti-coincidence Counter filters signal from unwanted side particles

The team has already noted an excess of extremely high-energy positrons – the antimatter equivalent of electrons – and atomic nuclei at 9 teraelectronvolts (TeV) – higher even than the LHC can produce. The scientists involved in the project, however, aren’t too quick on publishing hasty results. The AMS collects hundreds of times per second, and a team of scientists at CERN is constantly monitoring particles 24/7 in shifts. So far, only a few percent of the data has been analyzed.

I have told my collaborators that in the next 40-50 years it is very unlikely people will be so foolish as to repeat this experiment, given the difficulty I ran into,” said Nobel laureate Sam Ting of the Massachusetts Institute of Technology (MIT) has led the project since its inception some 17 years ago.

“Therefore it’s extremely important when we publish a result, we publish it correctly, because otherwise you’ll certainly mislead physics and there’s no way to check us.”

Indeed, news from the AMS should be really interesting to follow in the coming years.

source: BBC

share Share

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

Ice isn't as passive as it looks.

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

Astronomers may have discovered the first rocky planet with 'air' where life could exist.

Scientists Finally Prove Dust Helps Clouds Freeze and It Could Change Climate Models

New analysis links desert dust to cloud freezing, with big implications for weather and climate models.

Mars Seems to Have a Hot, Solid Core and That's Surprisingly Earth-Like

Using a unique approach to observing marsquakes, researchers propose a structure for Mars' core.

Giant solar panels in space could deliver power to Earth around the clock by 2050

A new study shows space solar panels could slash Europe’s energy costs by 2050.

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists May Have Found a New Mineral on Mars. It Hints The Red Planet Stayed Warm Longer

Scientists trace an enigmatic infrared band to heated, oxygen-altered sulfates.

A Comet That Exploded Over Earth 12,800 Years Ago May Have Triggered Centuries of Bitter Cold

Comet fragments may have sparked Earth’s mysterious 1,400-year cold spell.

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

Bright, polarized, and unseen in any other light — Punctum challenges astrophysical norms.