homehome Home chatchat Notifications


Achieving the unbelievable: taking a picture of a black hole

Black Holes are the least understood entities, so far, in the Universe. However, if there’s one thing scientists know for sure about them, it’s that they’re the most extreme environment in cosmos. Black Holes have such a powerful, relentless gravity pull that it swallows absolutely everything in its vicinity, even light gets absorbed with zero […]

Tibi Puiu
January 19, 2012 @ 2:24 pm

share Share

Black Holes are the least understood entities, so far, in the Universe. However, if there’s one thing scientists know for sure about them, it’s that they’re the most extreme environment in cosmos. Black Holes have such a powerful, relentless gravity pull that it swallows absolutely everything in its vicinity, even light gets absorbed with zero reflection. This makes it practically invisible, which is why they’re very difficult to study. Scientists  are now set to embark on one of the most ambitious astrophysical ventures in history – taking a picture of a black hole. No, by no means is this a mad science stunt. The greatest minds of the scientific community have pledged their aid for the project and firmly believe this is possible, in an unprecedented worldwide combined effort, which only a few years ago would’ve been considered ludicrous.

“Nobody has ever taken a picture of a black hole,” said Dimitrios Psaltis, an associate professor of astrophysics at the University of Arizona’s Steward Observatory, who along with Daniel Marrone, an assistant professor of astronomy at Steward Observatory, organized a conference in Tucson, Ariz. where the endeavor was announced “We are going to do just that.”

“Even five years ago, such a proposal would not have seemed credible,” added Sheperd Doeleman, assistant director of the Haystack Observatory at Massachusetts Institute of Technology (MIT), who is the principal investigator of the Event Horizon Telescope, as the project is dubbed. “Now we have the technological means to take a stab at it.”

Computer simulation of superheated plasma swirling around the black hole at the center of our galaxy. (Image by Scott Noble/RIT)

Computer simulation of superheated plasma swirling around the black hole at the center of our galaxy. (Image by Scott Noble/RIT)

Einstein’s Theory of Relativity laid the foundation for the postulation of black holes, proving gravity does indeed influence light’s motion. Based on Einstein’s theory, fellow German physicist Karl Schwarzschild found a solution which described the gravitational field of a point mass and a spherical mass. Since then, scientists have observed, measured and conducted experiments for decades with significant breakthroughs, however it was never possible for them to directly observe or image a black hole. But if black holes don’t emit light, how is it possible to image them? Professor Doeleman explains this extremely ingenious project in a masterful way.

“As dust and gas swirls around the black hole before it is drawn inside, a kind of cosmic traffic jam ensues,” Doeleman explained. “Swirling around the black hole like water circling the drain in a bathtub, the matter compresses and the resulting friction turns it into plasma heated to a billion degrees or more, causing it to ‘glow’ – and radiate energy that we can detect here on Earth.”

Capturing the Milky Way’s supermassive black hole halo

Very clever, right? Once light passes the point of no return, or Event Horizon, it is lost forever, however its outline can be studied – this is called the black hole’s shadow.

Scientists have well founded reasons to believe that at the center of the Milky Way, like in most galaxies, if not all actually, lies a supermassive black hole (one to four million times the mass of the sun). Estimated at 26,000 light years away, to have a chance at seeing it scientists say you’d need a very big telescope – a telescope the size of the entire Earth to be more exact.

Of course, there’s a solution around this – connecting the biggest and most powerful radio telescopes in the world together. As such, 50 radio telescopes scattered around the globe have joined the effort, including the Submillimeter Telescope (SMT) on Mt. Graham in Arizona, telescopes on Mauna Kea in Hawaii and the Combined Array for Research in Millimeter-wave Astronomy (CARMA) in California. The astronomers hope once the biggest telescope in the world, the Atacama Large Millimeter Array (ALMA) in Chile, is finished it will provide the necessary power to provide the project, the Event Horizon Telescope as it was dubbed, with a great chance of success.

“In essence, we are making a virtual telescope with a mirror that is as big as the Earth,” Doeleman said. “Each radio telescope we use can be thought of as a small silvered portion of a large mirror. With enough such silvered spots, one can start to make an image.”

“The Event Horizon Telescope is not a first-light project, where we flip a switch and go from no data to a lot of data,” he added. “Every year, we increase its capabilities by adding more telescopes, gradually sharpening the image we see of the black hole.”

General Relativity predicts that the bright outline defining the black hole’s shadow must be a perfect circle. If this shape will be found to be deviated in any manner, than it would prove that the Theory of Relativity is wrong. On the contrary, if it is indeed a circle, little doubt would be left to cast.

Bringing together radio telescopes around the globe requires an extraordinary global team effort, and I can only salute this initiative. What a milestone for science would it be if the researchers will manage to capture a black hole’s shadow.

“This is not only the usual international conference where people come from all over the world because they are interested in sharing their research,” Psaltis said. “For the Event Horizon Telescope, we need the entire world to come together to build this instrument because it is as big as the planet. People are coming from all over the world because they have to work on it.”

source

share Share

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

Astronomers may have discovered the first rocky planet with 'air' where life could exist.

Scientists Finally Prove Dust Helps Clouds Freeze and It Could Change Climate Models

New analysis links desert dust to cloud freezing, with big implications for weather and climate models.

Mars Seems to Have a Hot, Solid Core and That's Surprisingly Earth-Like

Using a unique approach to observing marsquakes, researchers propose a structure for Mars' core.

Giant solar panels in space could deliver power to Earth around the clock by 2050

A new study shows space solar panels could slash Europe’s energy costs by 2050.

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists May Have Found a New Mineral on Mars. It Hints The Red Planet Stayed Warm Longer

Scientists trace an enigmatic infrared band to heated, oxygen-altered sulfates.