homehome Home chatchat Notifications


Physicists claim that a photon can be 'split' into halves

But it's all just theory for now. If confirmed, the implications in physics would be immense.

Tibi Puiu
December 15, 2021 @ 1:01 am

share Share

Animation by LaDarius Dennison.

Technically, both electrons and photos are considered fundamental particles, in the sense that they cannot be broken down into smaller parts like you would split a proton into quarks and gluons. But some physicists believe that, in very special conditions, electrons can be divided into halves, an idea first proposed nearly a century ago by Italian physicist Ettore Majorana. Now, researchers at Dartmouth and the SUNY Polytechnic Institute have devised a theoretical framework that supports halving for the building blocks of light — photons.

“This is a major paradigm change of how we understand light in a way that was not believed to be possible,” said Lorenza Viola, Professor of Physics at Dartmouth and senior researcher on the study. “Not only did we find a new physical entity, but it was one that nobody believed could exist.”

The physicists note that they don’t mean that a photon can be physically pulled apart. Instead, the photon halves are always together but are distinct enough such that they can be individually described and function as separate units.

“Every photon can be thought of as the sum of two distinct halves,” said Vincent Flynn, a Ph.D. candidate at Dartmouth and first author of the paper. “We were able to identify conditions for isolating these halves from one another.”

To better understand this novel theoretical framework, Professor Viola uses the phases of water as an analogy. Liquid water behaves very differently from ice or vapor, but all forms of matter are essentially water at the end of the day. Just like water can cross between different phases, so can light exist in different phases, and, in one of these phases, photons appear as two distinct halves.

“Water is water regardless of its liquid or solid form. It just behaves differently depending on physical conditions,” said Viola. “This is how we need to approach our understanding of light—like matter, it can exist in different phases.”

The Majorana boson

All subatomic particles can be divided into two grand families: fermions and bosons. Fermions, such as electrons, protons, and neutrons, make up all ordinary matter, whereas bosons, such as photons and bosons, create the forces that glue all this matter together.

In 1937, physicists predicted the existence of neutral, electron-like particles known as Majorana fermions, essentially electron ‘halves’. In 2001, researchers presented a process by which electrons could actually be halved in certain superconductors. These quasiparticles are of special interest to scientists working on quantum computers because they can be used as qubits.

However, until now, the photon has always been thought of as totally indivisible.

“Fermions and bosons are as different as two things can be in physics,” said Emilio Cobanera, assistant professor of physics at SUNY Polytechnic Institute, and co-author of the study. “In effect, the particles are distorted images of each other. The existence of the Majorana fermions was our main clue that the Majorana boson was hiding somewhere in the funhouse mirror.”

The idea that photons can exist in two distinct split forms stretches the limits of physics and is, no doubt, intriguing. However, it will require confirmation through experiments. According to the authors of the new study, an experiment designed to detect photon halves is accessible using existing technology and wouldn’t involve a setup larger than a tabletop, unlike the massive particle accelerators at CERN required for the detection of the elusive Higgs boson.

The findings could have important implications in the fields of optical sensors and quantum information processors, and could open the doors for discovering new and exotic phases of light and matter.

“In order to make this discovery we had to challenge long-held beliefs and really think outside the box,” said Viola. “We have split something previously thought to be unsplittable, and we’ll never look at light the same way.”

The findings were described in the Physical Review Letters.

share Share

AI has a hidden water cost − here’s how to calculate yours

Artificial intelligence systems are thirsty, consuming as much as 500 milliliters of water – a single-serving water bottle – for each short conversation a user has with the GPT-3 version of OpenAI’s ChatGPT system. They use roughly the same amount of water to draft a 100-word email message. That figure includes the water used to […]

Smart Locks Have Become the Modern Frontier of Home Security

What happens when humanity’s oldest symbol of security—the lock—meets the Internet of Things?

A Global Study Shows Women Are Just as Aggressive as Men with Siblings

Girls are just as aggressive as boys — when it comes to their brothers and sisters.

Birds Are Singing Nearly An Hour Longer Every Day Because Of City Lights

Light pollution is making birds sing nearly an hour longer each day

U.S. Mine Waste Contains Enough Critical Minerals and Rare Earths to Easily End Imports. But Tapping into These Resources Is Anything but Easy

The rocks we discard hold the clean energy minerals we need most.

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

Researchers finally control the fermentation process that can make or break chocolate.

Most Countries in the World Were Ready for a Historic Plastic Agreement. Oil Giants Killed It

Diplomats from 184 nations packed their bags with no deal and no clear path forward.

Are you really allergic to penicillin? A pharmacist explains why there’s a good chance you’re not − and how you can find out for sure

We could have some good news.

Archaeologists Find 2,000-Year-Old Roman ‘Drug Stash’ Hidden Inside a Bone

Archaeologists have finally proven that Romans used black henbane. But how did they use it?

Astronomers Capture the 'Eye of Sauron' Billions of Light Years Away and It Might Be the Most Powerful Particle Accelerator Ever Found

A distant galaxy’s jet could be the universe’s most extreme particle accelerator.