homehome Home chatchat Notifications


Petunia flowers guide researchers towards better, tastier cherry flavors

Sometimes, tasty treats lie where you least expect them.

Alexandru Micu
March 23, 2022 @ 9:31 pm

share Share

Research on the petunia flower may bear unexpected fruit for gourmands everywhere: better cherry and almond flavors.

Image via Pixabay.

A team of researchers from Purdue University has recently discovered the molecular recipe of one of the most coveted compounds today — benzaldehyde. Although you’ve most likely never heard of it before, you’re almost guaranteed to have tasted it. Benzaldehyde is a chemical compound used for some of the most popular food flavorings globally, including almond, raspberry, and cherry. Only vanillin, the aromatic compound that gives vanilla its characteristics, is more valuable in the food industry.

The new study describes the molecular structure of benzaldehyde, which was discovered during a study of the petunia’s smell.

Full of flavor

“Benzaldehyde is what gives that pleasant almond-like scent and is part of the aroma of many fruits,” said Natalia Dudareva, Distinguished Professor of Biochemistry in Purdue’s College of Agriculture, and lead author of the study. “That scent attracts pollinators and, in addition to those fruits, it is found in other plants, including petunias.”

Biochemists learn how to create different aromatic compounds in use today often from plants that are far removed from the ones those aromas are meant to recreate. These compounds then let us reproduce desirable tastes or smells and apply them to the products we crave. While entirely natural sources or aromatics are preferred, sometimes it isn’t viable to obtain the desired tastes this way.

Benzaldehyde “has an especially puzzling biosynthetic pathway” – the chemical process for forming a compound – according to Dudareva, one that has eluded researchers up to now. As such, various artificial chemical reactions were used at various points in its synthesis to produce the final aroma.

The researchers worked with petunias to uncover the natural biosynthetic pathway of benzaldehyde production. Armed with this knowledge, researchers will be able to transfer the genes that encode the process to yeast or other microbes to allow for industrial-scale production of the compound and its use in the food and beverage industry.

They report that the synthesis of this compound in petunia petals relies on an enzyme built from two subunits that must combine in equal amounts.

The team found that synthesis of benzaldehyde in petunia petals involves an enzyme consisting of two subunits that must combine in equal amounts to activate. This requirement is not commonly seen in the production of aromatic compounds, the researchers explain, which complicated efforts to understand this biosynthetic pathway up to today. Earlier research focused on looking for a single component, and this expectation likely ruined the efforts from the start.

“The gene directly responsible and enzyme needed for benzaldehyde synthesis were a mystery,” says said Xing-Qi Huang, co-author of the paper and postdoctoral researcher in Dudareva’s lab. “We tried newer techniques, but it took a classical approach to reveal it.”

“We estimate the size of the protein we are hunting in addition to other things we have learned about the pathway. We weren’t finding a good indication of a single protein within that estimate. However, we noticed the presence of two components of half the size of our estimate, and we thought maybe there are two subunits.”

Proteomic and genetic testing in the lab confirmed this hypothesis and led the team to the genes that encode the process. The team reports that they have mapped out “almost all” of the genes and pathways responsible for the petunia’s aromatic compounds. Further work will doubtlessly reveal the full extent of these pathways and lead us to a new way of creating high quality benzaldehyde — and tastier treats.

The paper “A peroxisomal heterodimeric enzyme is involved in benzaldehyde synthesis in plants” has been published in the journal Nature Communications.

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain