homehome Home chatchat Notifications


Petunia flowers guide researchers towards better, tastier cherry flavors

Sometimes, tasty treats lie where you least expect them.

Alexandru Micu
March 23, 2022 @ 9:31 pm

share Share

Research on the petunia flower may bear unexpected fruit for gourmands everywhere: better cherry and almond flavors.

Image via Pixabay.

A team of researchers from Purdue University has recently discovered the molecular recipe of one of the most coveted compounds today — benzaldehyde. Although you’ve most likely never heard of it before, you’re almost guaranteed to have tasted it. Benzaldehyde is a chemical compound used for some of the most popular food flavorings globally, including almond, raspberry, and cherry. Only vanillin, the aromatic compound that gives vanilla its characteristics, is more valuable in the food industry.

The new study describes the molecular structure of benzaldehyde, which was discovered during a study of the petunia’s smell.

Full of flavor

“Benzaldehyde is what gives that pleasant almond-like scent and is part of the aroma of many fruits,” said Natalia Dudareva, Distinguished Professor of Biochemistry in Purdue’s College of Agriculture, and lead author of the study. “That scent attracts pollinators and, in addition to those fruits, it is found in other plants, including petunias.”

Biochemists learn how to create different aromatic compounds in use today often from plants that are far removed from the ones those aromas are meant to recreate. These compounds then let us reproduce desirable tastes or smells and apply them to the products we crave. While entirely natural sources or aromatics are preferred, sometimes it isn’t viable to obtain the desired tastes this way.

Benzaldehyde “has an especially puzzling biosynthetic pathway” – the chemical process for forming a compound – according to Dudareva, one that has eluded researchers up to now. As such, various artificial chemical reactions were used at various points in its synthesis to produce the final aroma.

The researchers worked with petunias to uncover the natural biosynthetic pathway of benzaldehyde production. Armed with this knowledge, researchers will be able to transfer the genes that encode the process to yeast or other microbes to allow for industrial-scale production of the compound and its use in the food and beverage industry.

They report that the synthesis of this compound in petunia petals relies on an enzyme built from two subunits that must combine in equal amounts.

The team found that synthesis of benzaldehyde in petunia petals involves an enzyme consisting of two subunits that must combine in equal amounts to activate. This requirement is not commonly seen in the production of aromatic compounds, the researchers explain, which complicated efforts to understand this biosynthetic pathway up to today. Earlier research focused on looking for a single component, and this expectation likely ruined the efforts from the start.

“The gene directly responsible and enzyme needed for benzaldehyde synthesis were a mystery,” says said Xing-Qi Huang, co-author of the paper and postdoctoral researcher in Dudareva’s lab. “We tried newer techniques, but it took a classical approach to reveal it.”

“We estimate the size of the protein we are hunting in addition to other things we have learned about the pathway. We weren’t finding a good indication of a single protein within that estimate. However, we noticed the presence of two components of half the size of our estimate, and we thought maybe there are two subunits.”

Proteomic and genetic testing in the lab confirmed this hypothesis and led the team to the genes that encode the process. The team reports that they have mapped out “almost all” of the genes and pathways responsible for the petunia’s aromatic compounds. Further work will doubtlessly reveal the full extent of these pathways and lead us to a new way of creating high quality benzaldehyde — and tastier treats.

The paper “A peroxisomal heterodimeric enzyme is involved in benzaldehyde synthesis in plants” has been published in the journal Nature Communications.

share Share

Researchers Turned WiFi into a Medical Tool That Reads Your Pulse With Near Perfect Accuracy

Forget health trackers, the Wi-Fi in your living room may soon monitor your heartbeat.

Popular RVs in the US are built with wood from destroyed orangutan rainforest: Investigation

The RV industry’s hidden cost is orangutan habitat loss in Indonesia.

The Evolution of the Human Brain Itself May Explain Why Autism is so Common

Scientists uncover how human brain evolution boosted neurodiversity — and vulnerability to autism.

A Light-Based AI Can Generate Images Using Almost No Energy

The future of AI art might be powered by lasers instead of GPUs.

This 1,700-Year-Old Skull is the First Evidence of a Gladiator Bear in the Roman Empire

Archaeologists uncover first physical proof of brown bears in Roman arena games.

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

Astronomers may have discovered the first rocky planet with 'air' where life could exist.

Anthropic AI Wanted to Settle Pirated Books Case for $1.5 Billion. A Judge Thinks We Can Do Better

This case is quickly shaping up to be a landmark in AI history.

First Mammalian Brain-Wide Map May Reveal How Intuition and Decision-Making Works

The brain’s decision signals light up like a Christmas tree, from cortex to cerebellum.

Archaeologists Uncovered a Stunning 4,000-Year-Old Mural Unlike Anything Ever Seen in Peru That Predates the Inca by Millennia

A 3D temple wall with stars, birds, and shamanic visions stuns archaeologists in Peru

Scientists Finally Prove Dust Helps Clouds Freeze and It Could Change Climate Models

New analysis links desert dust to cloud freezing, with big implications for weather and climate models.