homehome Home chatchat Notifications


Peculiar pulsar slows down before 'glitching'

The findings might help astronomers unravel the dynamics inside neutron stars.

Tibi Puiu
August 14, 2019 @ 12:01 am

share Share

Artist impression of a pulsar. Credit: University of British Columbia.

Pulsars are rotating neutron stars that emit a focused beam of electromagnetic radiation, resulting in their nickname as “lighthouses” of the universe. Pulsars come in all shapes and sizes, and some behave quite weirdly and seemingly chaotic — but that doesn’t mean there isn’t a pattern.

Vela, a neutron star located nearly 1,000 light-years away from Earth in the southern sky, is famous among astronomers because it “glitches” once every three years, suddenly speeding up its rotational period before slowing down back to normal.

Scientists aren’t sure why this weird star is behaving this way but new observations suggest that Vela seems to slow down its rotation rate immediately before the glitch. This was the first time astronomers have ever seen anything like this.

Neutron stars are the remnants of huge dead stars and represent some of the densest objects in the universe. Imagine an object with the mass of a sun squashed down to the size of a city — that’s how dense these objects can get.

Most neutron stars are observed as pulsars, which rotate at very regular intervals ranging from milliseconds to seconds. 

For their new study, astronomers at the Monash University School of Physics and Astronomy reanalyzed observations of the Vela glitch made in December 2016.

This more thorough analysis revealed that Vela — which normally makes 11 rotations per second — started rotating even faster and then slowed down to a more normal speed very quickly.

Artist impression of the three components in the neutron star. Credit: Carl Knox

Although astronomers aren’t sure why this happens, the observation is consistent with theoretical models that suggest that neutron stars have three internal components.

“One of these components, a soup of superfluid neutrons in the inner layer of the crust, moves outwards first and hits the rigid outer crust of the star causing it to spin up,” said Dr. Paul Lasky, an astronomer at the Monash School of Physics and Astronomy and co-author of the new study published in the journal Nature Astronomy.

“But then, a second soup of superfluid that moves in the core catches up to the first causing the spin of the star to slow back down.”

Ultimately, what this new study shows is that a pulsar glitch isn’t a straightforward, single-step process. Instead, a complex interplay of internal forces seems to generate sophisticated behaviors in the neutron stars, although the exact mechanisms are still a mystery. In the future, new observations and theoretical models may reveal more.

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

We can still easily get AI to say all sorts of dangerous things

Jailbreaking an AI is still an easy task.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

Astronomers may have discovered the first rocky planet with 'air' where life could exist.

Mars Seems to Have a Hot, Solid Core and That's Surprisingly Earth-Like

Using a unique approach to observing marsquakes, researchers propose a structure for Mars' core.

AI has a hidden water cost − here’s how to calculate yours

Artificial intelligence systems are thirsty, consuming as much as 500 milliliters of water – a single-serving water bottle – for each short conversation a user has with the GPT-3 version of OpenAI’s ChatGPT system. They use roughly the same amount of water to draft a 100-word email message. That figure includes the water used to […]

Smart Locks Have Become the Modern Frontier of Home Security

What happens when humanity’s oldest symbol of security—the lock—meets the Internet of Things?