homehome Home chatchat Notifications


Heart-repairing patches poised for human trials, researchers report

But can they fix a broken heart?

Alexandru Micu
June 6, 2019 @ 7:49 pm

share Share

Heart ‘patches’ developed by the British Heart Foundation (BHF) have proven themselves safe in animal lab trials — and will be moving on human trials.

Heart balloon.

Image credits Peggy Lachmann-Anke , Marco Lachmann-Anke.

The patches could one day help people manage and recover from debilitating heart failure, a condition which affects an estimated 920,000 people in the UK alone, and is on the rise worldwide, say researchers from the BHF. The patches are thumb-sized bits of heart tissue measuring 3cm by 2cm and containing up to 50 million human stem cells. These cells have the ability to turn into fully-functional heart tissue, and are meant to be applied to the heart of someone after they’ve had a heart attack. Used in this fashion, they can limit, and even reverse, the loss of the heart’s pumping ability.

Heart attack, heart defense

“One day, we hope to add heart patches to the treatments that doctors can routinely offer people after a heart attack,” says Dr Richard Jabbour who carried out the research at the London BHF Centre of Regenerative Medicine.

“We could prescribe one of these patches alongside medicines for someone with heart failure, which you could take from a shelf and implant straight in to a person.”

During a heart attack, our hearts’ supply of nutrients and oxygen can become compromised, killing off parts of the heart muscle. This leaves the organ weakened and could even lead to heart failure later on. This condition involves the heart not being able to pump sufficient blood to the rest of the body, making even mundane tasks such as climbing stairs or getting dressed extremely tiring.

The patches are meant to be sewn into place on the damaged heart, where they will offer physical support to the damaged muscle and help it pump more efficiently. At the same time, the patch delivers compounds that stimulate its healing and regeneration. Eventually, the team hopes, these patches will be incorporated into the heart muscle.

The patches start to beat spontaneously after three days, and start to mimic the structure of mature heart tissue within one month, the team explains. After this, they can be grafted into the damaged heart to help it repair and recover normal functionality.

Rabbit trials showed these patches to be safe and that they lead to an improvement in the functioning of the heart after a heart attack. Four weeks after the patches were applied, heart scans showed that the heart’s left ventricle (the one which pumps blood out to the body) was recovering nicely, without any abnormal heart rhythms. Other stem cell delivery methods run the risk of such abnormal rhythms developing, the team explains.

So far, the patches have proven their efficacy. The next steps include a clinical trial with human subjects, first to test how safe they are, then to see if they can achieve the same levels of healing in humans. They were developed as an alternative to the more traditional approach of injecting stem cells directly into damaged hearts, which has had mixed results. In the absence of a patch, the stem cells are quickly cleared from the heart before they can produce any significant repairs.

“One day, we hope to add heart patches to the treatments that doctors can routinely offer people after a heart attack,” says Dr Richard Jabbour, who carried out the research at the London BHF Centre of Regenerative Medicine said.

“We could prescribe one of these patches alongside medicines for someone with heart failure, which you could take from a shelf and implant straight in to a person.”

The findings were presented at the British Cardiovascular Society (BCS) Conference in Manchester on Monday, June 3rd.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics