homehome Home chatchat Notifications


Scientists make paralyzed mice walk again, in groundbreaking treatment

The groundbreaking treatment could soon be trialed on humans.

Mihai Andrei
January 25, 2021 @ 6:07 pm

share Share

A team of German researchers have achieved something once thought impossible: they’ve enabled mice paralyzed after spinal cord injuries to walk again. The designer protein (a cytokine) could be used to regenerate injured nerves in the spinal cord.

Neurons don’t naturally regenerate their axons (the long slender projections that conduct electrical impulses). So in the case of an injury that severs these axons, the damage was thought to be permanent. For decades, researchers have looked for a way to repair these connections, but haven’t had much success — until recently.

In 2013, neuroscientists in Germany published a study suggesting that a signaling protein (cytokine) could promote regeneration of optic nerve axons. But the study was carried out in lab cultures, not in real mice.

Breaking new ground

Now, the approach has been demonstrated in real mice. The team of researchers from Ruhr University Bochum administered the treatment to paralyzed rodents. After two to three weeks, the rats started walking.

The treatment is essentially an injection of genetic information that instructs the brain to produce the protein (called hyper-interleukin-6). This gene therapy is administered just one time, and the protein is then distributed via branching axons to even the distant, inaccessible parts of the central nervous system.

This is one of the main achievements of the work — that it not only stimulates the nerve cells it reaches to produce the protein, but that it is also carried farther (through the brain) to inaccessible parts. So with a relatively small injection, they can stimulate large parts of the brain, researchers say.

The team is now investigating if the treatment can be improved in any way, such as grafting to the spinal injury site. After these trials, and after a satisfactory form is reached, the treatment will then be trialed on larger mammals (such as pigs, dogs, or primates). If it is also successful, the treatment could then be trialed on humans, if it is proven safe.

The study “Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice” has been published in Nature Communications.

share Share

Pluto's Moons and Everything You Didn't Know You Want to Know About Them

Pluto may have been demoted to non-planet status, but it still commands a court of five moons, as is fitting for the king of darkness; after all, Pluto is the Roman equivalent of the Greek God Hades. For decades, we knew almost nothing about these moons but in 2015, the New Horizons mission changed that. […]

Japan Is Starting to Use Robots in 7-Eleven Shops to Compensate for the Massive Shortage of Workers

These robots are taking over repetitive jobs and reducing workload as Japan combats a worker crisis.

This Bizarre Martian Rock Formation Is Our Strongest Evidence Yet for Ancient Life on Mars

We can't confirm it yet, but it's as close as it gets.

A small, portable test could revolutionize how we diagnose Alzheimer's

A passive EEG scan could spot memory loss before symptoms begin to show.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

Forget the wild-haired savages. Here's what Vikings really looked like

Hollywood has gravely distorted our image.

Is a Plant-Based Diet Really Healthy for Your Dog? This Study Has Surprising Findings

You may need to revisit your dog's diet.

Who Invented Russian Roulette? How a 1937 Short Story Sparked the Deadliest "Game" in Pop Culture

Russian Roulette is deadly game that likely spawned from a work of fiction.

What Do Ancient Egyptian Mummies Smell Like? "Woody", "Spicy" and Even "Sweet"

Scientists used an 'electronic nose' (and good old biological sniffers) to reveal the scents of ancient mummies.

A Massive Seaweed Belt Stretching from Africa to the Caribbean is Changing The Ocean

The Great Atlantic Sargassum Belt hit a record 37.5 million tons this May