homehome Home chatchat Notifications


Scientists make paralyzed mice walk again, in groundbreaking treatment

The groundbreaking treatment could soon be trialed on humans.

Mihai Andrei
January 25, 2021 @ 6:07 pm

share Share

A team of German researchers have achieved something once thought impossible: they’ve enabled mice paralyzed after spinal cord injuries to walk again. The designer protein (a cytokine) could be used to regenerate injured nerves in the spinal cord.

Neurons don’t naturally regenerate their axons (the long slender projections that conduct electrical impulses). So in the case of an injury that severs these axons, the damage was thought to be permanent. For decades, researchers have looked for a way to repair these connections, but haven’t had much success — until recently.

In 2013, neuroscientists in Germany published a study suggesting that a signaling protein (cytokine) could promote regeneration of optic nerve axons. But the study was carried out in lab cultures, not in real mice.

Breaking new ground

Now, the approach has been demonstrated in real mice. The team of researchers from Ruhr University Bochum administered the treatment to paralyzed rodents. After two to three weeks, the rats started walking.

The treatment is essentially an injection of genetic information that instructs the brain to produce the protein (called hyper-interleukin-6). This gene therapy is administered just one time, and the protein is then distributed via branching axons to even the distant, inaccessible parts of the central nervous system.

This is one of the main achievements of the work — that it not only stimulates the nerve cells it reaches to produce the protein, but that it is also carried farther (through the brain) to inaccessible parts. So with a relatively small injection, they can stimulate large parts of the brain, researchers say.

The team is now investigating if the treatment can be improved in any way, such as grafting to the spinal injury site. After these trials, and after a satisfactory form is reached, the treatment will then be trialed on larger mammals (such as pigs, dogs, or primates). If it is also successful, the treatment could then be trialed on humans, if it is proven safe.

The study “Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice” has been published in Nature Communications.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.