homehome Home chatchat Notifications


Painting wind turbines black can help birds not fly into them

Both birds and the Rolling Stones want you to paint it black.

Alexandru Micu
August 25, 2020 @ 1:50 am

share Share

The white, sleek exterior of the wind turbine definitely looks good to me. But birds probably wouldn’t agree. According to a new paper, the current design of our wind turbines makes them hard to see for birds, promoting impacts.

Image credits Roel May et al., (2020), Ecology and Evolution.

Not only would such a change help save bird lives, but it would also help our bottom line. Birds in flight hit hard, and turbines are expensive to repair or replace. Taking one of them off for repairs also incurs costs (as they can’t produce power during the same time). All in all, the paper argues, painting one of the three rotor blades black is enough to help birds see the turbines and avoid collisions.

Seeing is avoiding

“As wind energy deployment increases and larger wind‐power plants are considered, bird fatalities through collision with moving turbine rotor blades are expected to increase. However, few (cost‐) effective deterrent or mitigation measures have so far been developed to reduce the risk of collision,” the authors explain in their paper.

“We tested the hypothesis that painting would increase the visibility of the blades, [which reduced bird fatalities] by over 70% relative to the neighboring control (i.e., unpainted) turbines.”

Growing awareness of climate change has prompted countries all over the world to move away from fossil fuels into clean energy sources; wind is a particular favorite, as wind farms can be installed in otherwise unusable (and quite unpleasant areas) such as windy coastal areas.

That isn’t to say, however, that wind energy is flawless. As with everything else in life, it comes with good and bad both. Although they won’t release CO2 and heat up the planet, turbines can be quite disturbing to wildlife as they’re quite noisy, they bring humans to the area, and they’re a significant collision risk for birds. We have procedures in place to ensure that the sites we choose for such farms pose the lowest possible risk to wildlife. However, as more and more wind capacity is being installed, it’s unavoidable that it will impact local animals.

The current paper tested whether painting one of the three rotor blades of each turbine can help lower collisions with birds. The experiment was carried out at the Smøla wind-power in Norway. The plant was built in two phases: 20 turbines of 2.1 MW were finished in September 2002, and an additional 48 turbines of 2.3 MW in August 2005. the team used trained dogs to look for bird carcasses in a radius of 100 m around the turbines “at regular intervals”.

Roughly 9,560 turbine searches were performed between 2006–2016, finding 464 carcasses. The team explains that “there was an average 71.9% reduction in the annual fatality rate after painting at the painted turbines relative to the control turbines”. Despite this, they note that annual fatalities fluctuated significantly. All in all, there is enough evidence to seriously consider this approach as an effective way to protect birds from impacts with wind turbines. However, more long-term research is needed to establish exactly how effective it is in absolute numbers.

“The in situ experiment was performed comparing only four treated turbines to the neighboring four untreated turbines. We must therefore be careful what we deduce from the experiment given the limited number of turbine pairs,” the authors note.

“However, the experiment ran over a long timeframe, encompassing seven and a half years pretreatment and three and a half years post‐treatment”

The paper “Paint it black: Efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities” has been published in the journal Ecology and Evolution.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.