homehome Home chatchat Notifications


Researchers identify neurons that shut down rewards and motivation in the brains of mice

"We might think of different scenarios where people aren't motivated like depression and block these neurons and receptors to help them feel better," the authors explain.

Alexandru Micu
July 26, 2019 @ 7:30 pm

share Share

New research is pushing mice to their breaking point to see what our brain does as we give up.

No Fun Allowed.

Image credits Lagrevehumaine / Wikimedia.

A group of cells known as nociceptin neurons get busy when we’re giving up, new research shows. True to their name, these neurons release nociceptin, a complex molecule that suppresses dopamine. Dopamine is a neurotransmitter that underpins the brain’s pleasure and reward networks. The findings offer us a fresh take on the processes that govern motivation.

Giveupceptin

“We are taking an entirely new angle on an area of the brain known as VTA [ventral tegmental area],” said co-lead author Christian Pedersen, a fourth-year Ph.D. student in bioengineering at the University of Washington School of Medicine and the UW College of Engineering. “The big discovery is that large complex neurotransmitters known as neuropeptides have a very robust effect on animal behavior by acting on the VTA,” said Pedersen.

Nociceptin neurons are located near the VTA, a brain area that houses the hormones that release dopamine during pleasurable activities. This study took four years to complete and, according to the team, is the first one to describe the effects of the nociceptin modulatory system on dopamine neurons. The team hopes their findings will lead to new ways of helping people find motivation when they are depressed or decrease motivation for drug use in substance-abuse disorders.

The team worked with mice that they trained to seek out sucrose (sugar). To do this, the animals had to poke their snout into a port. The team set-up their experiment in such a way that this task was very simple and straight-forward at first: one poke, one reward. Over time, however, it would take exponentially more pokes (two, five, so on) to get the reward — and eventually, the animals just gave up. All the while, the team monitored the mice’s neural activity.

These recordings showed that the nociceptin neurons act as ‘demotivators’ or ‘frustration’ neurons and became most active when mice stopped seeking sucrose — suggesting they put the brakes on motivation.

“We might think of different scenarios where people aren’t motivated like depression and block these neurons and receptors to help them feel better,” says senior author Michael Bruchas, professor of anesthesiology and pain medicine and of pharmacology at the University of Washington School of Medicine.

“That’s what’s powerful about discovering these cells. Neuropsychiatric diseases that impact motivation could be improved.”

The team explains that these neurons exist as a kind of insurance policy for mammals living in the wild. The reward pathways in our brains work to make us mammals maintain homeostasis (i.e. our internal ‘optimal running conditions’). However, in the wild, animals need a safety switch to keep them from pursuing rewards too much, as the environment tends to have limited resources and this pursuit of reward could impact the animal’s survival by expending too much energy, for example. Persistence in seeking uncertain rewards can also be disadvantageous due to risky exposure to predators, the researchers noted.

The paper “A Paranigral VTA Nociceptin Circuit that Constrains Motivation for Reward” has been published in the journal Cell.

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics