homehome Home chatchat Notifications


Nobel Prize in Chemistry goes to molecule-making duo

Their research helped develop new drugs and made chemistry greener.

Fermin Koop
October 6, 2021 @ 11:48 pm

share Share

Scottish-born David MacMillan and German Bernard List were awarded this year’s Nobel Prize in Chemistry for creating a new tool for molecular construction, organocatalysis, that has had a big impact on pharmaceutical research. It’s the third Nobel awarded so far this year after Medicine and Physics. 

Image credit: Nobel Academy.

Many industries rely on chemists to build molecules that can form durable materials, store energy in batteries and stop the progression of diseases. This requires catalysts, substances that control and accelerate chemical reactions. Even our body has plenty of catalysts in the form of enzymes, shaping the many molecules that are needed for life.

Researchers used to think that there were only two types of catalysts, metals and enzymes. But List and Macmillan showed this wasn’t necessarily the case. Instead, they created a third type of catalysis known as asymmetric organocatalysis. It’s a “simple and ingenious concept”, Johan Åqvist of the Nobel Committee for Chemistry said.

Looking into the research

When researching catalytic antibodies, List started to think about how enzymes work. They are big molecules built from amino acids, with a significant proportion that also have metals that drive chemical processes. But many enzymes can catalyze chemical reactions without metals, driven instead by one or a few amino acids in the enzyme.

This is when List asked himself whether amino acids had to be part of an enzyme so to catalyze a chemical reaction or if a single amino acid could do the same job. He recalled previous research in the 1970s with an amino acid called proline was used as a catalyst. But he assumed this didn’t work well as he couldn’t find further studies.

Still, he tested if proline could catalyze an aldol reaction, in which carbon atoms from different molecules are linked together. It worked straight away. He proved proline is an efficient catalyst and that this amino acid can drive asymmetric catalysis. Proline is in fact a dream tool for chemists – simple, cheap, and environmentally friendly. 

MacMillan realized that catalysts weren’t much used in industry and he assumed this was because sensitive metals were too difficult and expensive. He realized that he needed to rethink his whole approach and decided to stop looking at metals. Instead, he focused on designing simple organic molecules that could accommodate electrons. 

He tested the molecules’ ability to drive a Diels-Alder reaction, used by chemists to build rings of carbon atoms. It worked perfectly. Some of the molecules were also very good at asymmetric catalysis. He then came up with the name organocatalysis to describe how chemical reactions could be catalyzed using small organic molecules. 

A new concept for catalysis

List and Macmillan (alongside other researchers) went on to design many cheap and stable organocatalysts which can be used to drive many chemical reactions. These have led to more efficient molecular constructions, such as with the strychnine molecule. It first required 29 different chemical reactions but now it’s built-in just 12 steps thanks to organocatalysis. 

This has also had a big impact on pharmaceutical research. Until chemists could do asymmetric catalysis, many pharmaceuticals contained both mirror images of a molecule. One was active, while the other could have unwanted effects. Now, thanks to organocatalysis, researchers can produce big volumes of asymmetric molecules much simpler. 

“Benjamin List and David MacMillan remain leaders in the field, and have shown that organic catalysts can be used to drive multitudes of chemical reactions. Using these reactions, researchers can now more efficiently construct anything from new pharmaceuticals to molecules that can capture light in solar cells,” the Nobel academy wrote in a statement. 

Previous winners in chemistry include Marie Curie and Fredick Sanger, who won twice. Last year’s winners were Emmanuelle Charpentier and Jennifer Dounda for creating genetic “scissors” that can edit DNA. 

share Share

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.