homehome Home chatchat Notifications


World's fastest camera captures 10 trillion frames per second

The unprecedented scale of imaging can record even the slightest changes in the behavior of light.

Tibi Puiu
October 15, 2018 @ 6:20 pm

share Share

Thought your iPhone’s camera can shoot sick slow-mos? Here’s something a bit more impressive.

Credit: INRS.

Credit: INRS.

Researchers at Caltech and L’Institut national de la recherche scientifique (INRS) devised the world’s fastest camera, which can shoot an incredible 10 trillion frames per second. It’s so fast that it can capture the interactions between matter and light at the nanoscale. The new camera more than doubles the number of frames per second set by the previous record holder, a device developed by researchers in Sweden.

T-CUP, officially the world’s fastest camera, is based on the ‘Compressed Ultrafast Photography’ technology. It works by combining a femtosecond streak camera and a static camera. A data acquisition technique called Radon transformation rounds up the setup.

Such ultra-fast cameras will prove useful to physicists looking to probe the nature of light and how it travels. Other potential applications include medicine and engineering.

“We knew that by using only a femtosecond streak camera, the image quality would be limited. So to improve this, we added another camera that acquires a static image. Combined with the image acquired by the femtosecond streak camera, we can use what is called a Radon transformation to obtain high-quality images while recording ten trillion frames per second,” said Lihong Wang, the Bren Professor of Medical Engineering and Electrical Engineering at Caltech.

Real-time imaging of temporal focusing of a femtosecond laser pulse at 2.5 Tfps. Credit: Jinyang Liang, Liren Zhu & Lihong V. Wang.

Real-time imaging of temporal focusing of a femtosecond laser pulse at 2.5 Tfps. Credit: Jinyang Liang, Liren Zhu & Lihong V. Wang.

During a test, T-CUP captured a femtosecond (a millionth of a billionth second) laser pulse, recording 25 images which were 400 femtoseconds apart. The resolution and staggering scale involved allowed the research team to record changes in the light beam’s shape, intensity, and angle of inclination.

A femtosecond laser pulse passing through a beam splitter. Credit: INRS.

The level of precision obtained by the researchers is unprecedented — and they’d like to do even more! According to co-author Jinyang Liang, there are ways to increase the speed up to one quadrillion (1015) frames per second. Being able to record the behavior of light at such as scale is beyond our current technology but once it becomes reality, entirely new fields of physics could be opened up.

T-CUP was described in the journal Light: Science and Applications. 

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain