homehome Home chatchat Notifications


What is mass? Baby don't weigh me - revamping the metrology of mass

The metric system is due for a mass makeover, as scientists are preparing to redefine four basic units by the end of 2018 in an effort to provide accurate measurements at all scales.

Alexandru Micu
July 27, 2015 @ 12:20 pm

share Share

The metric system is due for a mass makeover, as scientists are preparing to redefine four basic units by the end of 2018 in an effort to provide accurate measurements at all scales.

The shift will most notably affect the kilogram, the base measure of mass and the last member of the International System of Units still defined by a physical object. Current efforts are under way to check and fine-tune measurements of fundamental natural quantities — such as Avogadro’s number — for use in giving the kilogram a new mathematical definition.

The kilogram standard.
Image via itsoktobesmart

How do we define a kilogram, and how will this change?

Since 1889, the standard for mass has been a 1-kilogram cylinder of platinum and iridium metal at the Bureau International des Poids et Mesures in Sèvres, France. While this standard is handled carefully, it’s at risk of becoming dirty or damaged, says Michael Stock, a physicist at the French bureau.

“Any material object can change over time,” he says.

“It’s also hard to accurately scale this physical standard down to very small masses, like those of electrons,” added physicist David Newell of the National Institute of Standards and Technology (NIST) in Gaithersburg, Md.

Scientists aim to give the kilogram a new definition based on nature’s fundamental physical constants. This task requires a highly accurate measurement of Planck’s constant, which links energy and frequency. Planck’s constant can be used to measure and describe mass, as the two are mathematically linked through another natural constant, the speed of light.

The American kilogram standard.
image via nist.gov

Researchers are using the existing physical definition of a kilogram to measure Planck’s constant as accurately as possible. Then, this value can be set in stone and used to define mass in the future.

With devices known as watt balances, scientists can measure Planck’s constant directly using precisely known standards of mass and electrical current. Once Planck’s constant has been fixed, watt balances will then use Planck’s constant to calculate unknown mass.

A watt balance. And a dude.
Image credits Robert Rathe

In another approach, scientists count the number of atoms in extremely pure 1-kilogram silicon spheres. This method determines the number of atoms in a kilogram, which could be used to define the unit of mass. This technique also allows scientists to calculate a different fundamental value, the Avogadro constant (or Avogadro’s number). This constant describes the number, roughly 6.02 x 1023, of units per mole, the metric unit for amount of a substance. (A mole is the mass of a substance equal to its atomic or molecular weight expressed in grams.) A precise Avogadro constant can be used to calculate and confirm Planck’s constant.

When the new value and its uncertainty is averaged with previous calculations, the Avogadro constant comes out to 6.02214082 x 1023 per mole with an uncertainty of 18 parts in a billion, scientists report July 14 in the Journal of Physical and Chemical Reference Data. This number is just slightly smaller than the value of the constant currently described by NIST — 6.022140857 x 1023 per mole.

The watt balance and atom-counting techniques now give a nearly identical value of Planck’s constant, currently given by NIST as 6.6260704 x10-34 joule-seconds, with an uncertainty of under 20 parts in a billion, says metrologist Ian Robinson of the National Physical Laboratory in Teddington, England. Further measurements are still under way.

Where is the metric system headed?

In fall 2018, international delegates at a meeting of the General Conference on Weights and Measures will decide whether or not to approve the kilogram’s new definition. Based on existing plans, many believe the redefinition will happen at this time, Stock says, though nothing is guaranteed.

Because researchers’ careful calculations have accounted for the existing definition of mass, the redefinition should cause no perceptible shift in measurement.

“If we do our jobs right, nobody’s going to notice a thing,” Newell says. But future mass measurements should become stable, Robinson says.

While redefining the kilogram will be the most critical change ahead, Stock says, scientists also hope to redefine other units, including the mole and the kelvin, which measures temperature. These redefinitions will depend on fixing other constants, including the Avogadro constant. Making all of these changes at once will limit the number of times textbooks must be changed, Stock says.

The redefinitions won’t mark an end to the quest for a perfect metric system, Newell says.

“Metrologists are going to make the measurement exactly right. And the corollary is, they never finish their measurement.”

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.