homehome Home chatchat Notifications


New nanodevice converts wasted heat into more battery life

A clever device runs at the fringe of physics to solve our wasted energy problems.

Tibi Puiu
July 10, 2019 @ 9:18 pm

share Share

A mechanical engineer at the University of Utah has found a ‘loophole’ around a physical principle that allows a device to convert wasted heat into electricity. The nanotechnology harvests heat from an object by placing two surfaces until they’re almost contacting one another. In the future, this setup might not only be able to cool down mobile devices like laptops and smartphones but it may also be able to channel their heat into more battery life.

University of Utah mechanical engineering associate professor Mathieu Francoeur. Credit: Dan Hixson/University of Utah College of Engineering.

University of Utah mechanical engineering associate professor Mathieu Francoeur. Credit: Dan Hixson/University of Utah College of Engineering.

The device in question, called a “Near-Field Radiative Heat Transfer Device”, was elaborated by Mathieu Francoeur, a mechanical engineering associate professor at the University of Utah. In order to harvest heat, this device blows past the so-called blackbody limit.

A black body is an object that absorbs all the electromagnetic radiation (i.e. light) that strikes it. However, in order to stay in thermal equilibrium, the black body must also emit radiation at the same rate as it absorbs it. For this reason, a black body also radiates well — it’s why stoves must be black.

The theoretical blackbody limit tells us the maximum amount of heat that can be emitted from an object. However, this ceiling is known to be no limit at all when the spacing between objects is small enough.

Francoeur and colleagues devised a 5mm-by-5mm chip, which is no bigger than an eraser head, made of two silicon wafers spaced by a nanoscopic gap only 100 nanometers thick — that’s one thousandth the thickness of a human hair.

“Nobody can emit more radiation than the blackbody limit,” he said. “But when we go to the nanoscale, you can.”

The chip was placed in a vacuum. The researchers then heated one side of the chip and cooled the other side separated by a tiny gap, creating a heat flux that can be converted into electricity. Generating electricity in this manner is not novel, but where the new study shines is in its demonstration of fitting two silicon surfaces close enough to achieve this effect without them touching each other. The closer the two surfaces are to one another, the more electricity can be generated.

About two-thirds of the energy consumed in the U.S. each year is lost as heat. Francoeur envisions a version of his chip in the future which cools down laptops and smartphones and channels extra electricity to the battery. He estimates that battery life could potentially be improved by 50% using this technology. For instance, a laptop with a six-hour charge could last nine hours. The blackbody chip could also be used to up the efficiency of solar panels or in automobiles to convert heat from the engines to power the electrical systems.

“You put the heat back into the system as electricity,” he said. “Right now, we’re just dumping it into the atmosphere. It’s heating up your room, for example, and then you use your AC to cool your room, which wastes more energy.”

The findings were published in the journal Nature Nanotechnology.

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics