homehome Home chatchat Notifications


Uranus may have collided with a cosmic body twice the size of Earth, explaining its unusual tilt

The icy gas giant likely collided with a massive cosmic body about 4 billion years ago.

Tibi Puiu
July 3, 2018 @ 1:21 pm

share Share

A cataclysmic collision with an enormous cosmic body twice the size of Earth may have caused Uranus to tilt and could explain its freezing temperatures.

The collision with Uranus of a massive object twice the size of Earth caused the planet's unusual spin. Credit: Jacob Kegerreis/Durham University.

The collision with Uranus of a massive object twice the size of Earth caused the planet’s unusual spin. Credit: Jacob Kegerreis/Durham University.

Uranus’ spins on its side, its axis pointing almost at right angles relative to all the other planets in our solar system. This behavior suggests that the planet almost certainly got knocked over by some giant impact, so the real questions astronomers have been asking are how all of this panned out and how else such a violent impact affected the planet.

Jacob Kegerreis and colleagues at Durham University’s Institute for Computational Cosmology performed over 50 different high-resolution computer simulations of massive collisions with the gas giant in order to answer these questions.

The conditions that lead to outcomes that most closely resemble what Uranus is doing right now suggest that the planet was most likely impacted by a young proto-planet mode of rock and ice during the solar system’s chaotic formation about 4 billion years ago. Since Uranus is so massive — it has about 14 times the mass of Earth and is around four times larger in radius — whatever hit the planet was huge, and scientists think it used to be between two and three Earth-masses.

According to the same simulations, the impact could have also released debris that formed a thin shell around the edge of the planet’s ice layer, trapping heat emanating from the planet’s core. This can partly explain Uranus’ ungodly cold temperature in the outer atmosphere, which averages around -216 degrees Celsius (-357 degrees Fahrenheit). Some of Uranus’ 27 moons — including 13 so-called ‘inner moons’ — might have formed as a result of the spewed debris.

“Our findings confirm that the most likely outcome was that the young Uranus was involved in a cataclysmic collision with an object twice the mass of Earth, if not larger, knocking it on to its side and setting in process the events that helped create the planet we see today,” Kegerreis said in a statement.

The collision wasn’t head-on. The cosmic body grazed Uranus instead, allowing the planet to retain the majority of its atmosphere. However, it was enough to affect the planet’s tilt.

2004 infrared composite image of the two hemispheres of Uranus obtained with Keck Telescope adaptive optics. The planet is tilted at almost a 90 degree angle with respect to the other planets in the solar syste. Credit: Lawrence Sromovsky, University of Wisconsin-Madison/W.W. Keck Observatory.

2004 infrared composite image of the two hemispheres of Uranus obtained with Keck Telescope adaptive optics. The planet is tilted at almost a 90-degree angle with respect to the other planets in the solar system. Credit: Lawrence Sromovsky, University of Wisconsin-Madison/W.W. Keck Observatory.

The impact could have created molten ice and lopsided lumps of rock inside the planet, explaining not only Uranus’ excentric tilt but also its off-center magnetic field.

Such planetary collisions, dramatic as they may sound, used to be quite common in the early solar system. Earth’s moon, for instance, is thought to have formed following a violent impact with a Mars-sized body.

Besides helping astronomers better their understanding of Uranus, the new study might also offer valuable clues as to how planets outside the solar system — called exoplanets — form and evolve.

The findings appeared in the Astrophysical Journal. 

share Share

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes

Lab-Grown Beef Now Has Real Muscle Fibers and It’s One Step Closer to Burgers With No Slaughter

In lab dishes, beef now grows thicker, stronger—and much more like the real thing.

From Pangolins to Aardvarks, Unrelated Mammals Have Evolved Into Ant-Eaters 12 Different Times

Ant-eating mammals evolved independently over a dozen times since the fall of the dinosaurs.

Potatoes were created by a plant "love affair" between tomatoes and a wild cousin

It was one happy natural accident.

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

A new study finds that marsquakes may have doubled as grocery deliveries.

Scientists Discover Life Finds a Way in the Deepest, Darkest Trenches on Earth

These findings challenge what we thought we knew about life in the deep sea.

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren't They In Your Phones and Cars Yet?

Solid state are miles ahead lithium-ion, but several breakthroughs are still needed before mass adoption.

What if the Secret to Sustainable Cities Was Buried in Roman Cement?

Is Roman concrete more sustainable? It's complicated.