homehome Home chatchat Notifications


Scientists analyze tornadoes in infrasound

Most tornado alarms are false, but this technology could change all that.

Mihai Andrei
May 8, 2018 @ 3:06 pm

share Share

Tornadoes can produce infrasounds, and those infrasounds can be used by scientists to “peak in” on the violent phenomena.

Composite of eight images shot in sequence as a tornado forming in Kansas in 2016. Image credits: Jason Weingart / Wikipedia.

A few decades ago, researchers realized that along with the very big ‘boom’, nuclear explosions also produce sounds — some of them at infrasound frequencies. Because infrasounds decay so slowly, they can travel around the Earth several times and can, therefore, be used to track nuclear tests.

Now, researchers are using the same approach to track down tornadoes, using infrasounds. During the 175th Meeting of the Acoustical Society of America, Brian Elbing, assistant professor of mechanical and aerospace engineering at Oklahoma State University, says that we can predict when and how a tornado will form, using infrasound detectors.

Tornado-producing storms can emit infrasound more than an hour before “tornadogenesis,” or tornado formation. Picking up on these waves could improve the accuracy of tornado alerts.

“By monitoring tornadoes from hundreds of miles away, we’ll be able to decrease false alarm rates and possibly even increase warning times,” Elbing said. “It also means storm chasers won’t need to get so close.”

[panel style=”panel-default” title=”Tornado formation” footer=””]No two tornadoes are the same, but all tornadoes require on specific conditions to form.

It starts when sunshine heats the ground, which causes pockets of air to rise. If the atmosphere is unstable, the pockets can rise to great heights, resulting in the development of much deep, strong currents of ascending air (updraughts) and storm clouds.

If the atmospheric winds are strong enough, the stormy updraughts can start to rotate, and tilt to become vertical.

Eventually, the rotation may become so strong that a narrow column of violently rotating air forms — thus, a tornado is born.[/panel]

An illustration of generation of infrasound in tornadoes by the Earth System Research Laboratory’s Infrasound Program.

In order to do this, Elbing and his team deployed three infrasound microphones arranged in a triangle, each spaced about 200 feet apart. The key features of these microphones are their ability to zoom in on very specific frequencies and to filter out any unwanted noise.

“First, these are larger for greater sensitivity to lower frequencies,” Elbing said. “Second, we need to get rid of wind noise. … We seal the microphone inside a container with four openings. A soaker hose — just like the ones used in gardens — is attached to each of these openings and stretched out in opposite directions.”

Of course, this would work best in areas which are prone to tornado formation, improving the alarm systems. A significant problem in such tornado-prone areas is that most tornado alarms are false — and as a result, are often ignored. With the infrasound technology, authorities could issue accurate alarm warnings and save lives. To make things even better, it can be used in tandem with existing technologies.

“Since infrasound is an independent data source, combining it with existing methods should help reduce false alarms,” said Elbing. “Today, 75% of tornado warnings are false alarms and tend to be ignored.”

Researchers already have their eyes on a particular test zone: Dixie Alley — the areas of the southern United States that are particularly vulnerable to strong or violent tornadoes. From there on, the technology could be deployed in much greater areas such as the infamous Tornado Alley.

“This is especially true for Dixie Alley, which isn’t known for the largest tornadoes but frequently has the most fatalities,” Elbing said. “Complex terrain, irregular road patterns, and nighttime tornadoes prevent storm chasers from observing these tornadoes, so long-range, passive monitoring for tornadoes will provide invaluable information about their formation processes and life cycle.”

Results have not yet been peer-reviewed.

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain