homehome Home chatchat Notifications


Breakthrough chemistry can make tires from renewable sources like corn or trees

A key molecule in tire production that's typically sourced from petroleum was made for the first time using biomass.

Tibi Puiu
February 15, 2017 @ 8:51 pm

share Share

Credit: Wikimedia Commons.

Credit: Wikimedia Commons.

Long range electric vehicles hold the key to ridding the transport sector of petroleum liquid fuels, as long as the energy stored in the batteries comes from renewable energy sources. But even a Tesla charged from solar panels isn’t completely free of fossil fuels. Even ignoring the fossil fuel-derived energy that went in the manufacturing process, there are still plastic finishings inside the car that likely come petroleum. And even if you’d be extremely careful not to include anything fossil fuel related, you’d still hit a brick wall — the car’s tires.

Wheels of progress

Car tires are some of the most environmentally unfriendly parts in any car. These are made from natural rubber, which literally grows on trees,  but also isoprene — a key molecule in any tire which is derived from petroleum through a chemical process called ‘cracking’. Developing tires from renewable materials has always been a lofty goal for scientists but despite their best efforts, this has proven extremely challenging until recently. Now, a team from the University of Minnesota claims it has perfected a three-step chemical process that can produce isoprene from renewable biomass such as trees or grasses.

Previous efforts involving the manufacturing of tires from renewable sources focused on biological processes. Specifically, researchers tried fermentation of biomass — a process similar to the one used to produce ethanol — but these attempts have failed. Isoprene proves to be a challenging molecule to generate from microbes.

The team from the Center for Sustainable Polymers at the University of Minnesota also employed microbes in their process but added new steps to produce stable isoprene molecules. Paul Dauenhauer, associate professor of chemical engineering and materials science, along with colleagues, started with sugars derived from biomass, which can include anything from corn to trees. The sugars are then fermented to create itaconic acid, which is in turn reacted with hydrogen in the presence of a metal-metal catalyst to form methyl-THF (tetrahydrofuran), an intermediate molecule key to synthesizing isoprene.

Catalytic conversion of biomass-derived chemicals to renewable polymers occurs in laboratory stirred-tank reactors. Credit: University of Minnesota.

Catalytic conversion of biomass-derived chemicals to renewable polymers occurs in laboratory stirred-tank reactors. Credit: University of Minnesota.

The third and final step involves converting the dehydrate methyl-THF to isoprene, and it is herein that the breakthrough lies. Another catalyst called catalyst called P-SPP (Phosphoros Self-Pillared Pentasil) and discovered at the University of Minnesota was used for this task. Remarkably, the novel catalyst had a catalytic efficiency as high as 90 percent, i.e. most of the catalytic product turns out to be isoprene.

“The performance of the new P-containing zeolite catalysts such as S-PPP was surprising,” says Dauenhauer.  “This new class of solid acid catalysts exhibits dramatically improved catalytic efficiency and is the reason renewable isoprene is possible.”

“Economically bio-sourced isoprene has the potential to expand domestic production of car tires by using renewable, readily available resources instead of fossil fuels,” said Frank Bates, a world-renowned polymer expert and University of Minnesota Regents Professor of Chemical Engineering and Materials Science. “This discovery could also impact many other technologically advanced rubber-based products.”

Findings appeared in the journal  ACS Catalysis.

 

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics