homehome Home chatchat Notifications


The smallest refrigerator in the world will keep your nanosoda cool

The cooler is 10,000 times smaller than the previously smallest thermoelectric fridge.

Tibi Puiu
February 28, 2022 @ 6:13 pm

share Share

This electron microscope image shows the cooler’s two semiconductors — one flake of bismuth telluride and one of antimony-bismuth telluride — overlapping at the dark area in the middle, which is where most of the cooling occurs. The small “dots” are indium nanoparticles, which the team used as thermometers. Credit: UCLA.

By using the same physical principles that have been powering instruments aboard NASA’s Voyager spacecraft for the past 40 years, researchers at UCLA have devised the smallest refrigerator in the world. The thermoelectric cooler is only 100 nanometers thick — roughly 500 times thinner than the width of a strand of human hair — and could someday revolutionize how we keep microelectronics from overheating.

“We have made the world’s smallest refrigerator,” said Chris Regan, who is a UCLA physics professor and lead author of the new study published this week in the journal ACS Nano.

Instead of your vapor-compression system inside your refrigerator, the tiny device developed by Regan’s team of researchers is thermoelectric. When two different semiconductors are sandwiched between metal plates, two things can happen.

If heat is applied, one side becomes hot, while the other remains cool. This temperature difference can be harvested to generate electricity. Case in point, the Voyager spacecraft, which is believed to have traveled beyond the limits of the solar system after it visited the outermost planets in the 1970s, is still powered to this day by thermoelectric devices that generate electricity from heat produced by a plutonium nuclear reactor.

This process also works in reverse. When electricity is applied, one semiconductor heats up, while the other stays cold. The cold side can thus function as a cooler or refrigerator.

What the UCLA physicists were able to do is scale down thermoelectric cooling by a factor of more than 10,000 compared to the previous smallest thermoelectric cooler.

They did so using two standard semiconductor materials: bismuth telluride and antimony-bismuth telluride. Although the materials are common, the combination of the two bismuth compounds in two-dimensional structures proved to be excellent.

Typically, the materials employed in thermoelectric coolers are good electrical conductors but poor thermal conductors. These properties are generally mutually exclusive — but not in the case of the atom-thick bismuth combo.

“Its small size makes it millions of times faster than a fridge that has a volume of a millimeter cubed, and that would already be millions of times faster than the fridge you have in your kitchen,” Regan said.

“Once we understand how thermoelectric coolers work at the atomic and near-atomic level,” he said, “we can scale up to the macroscale, where the big payoff is.”

One of the biggest challenges the researchers had to face was measuring the temperature at such a tiny scale. Your typical thermometer simply won’t do. Instead, the physicists employed a technique that they invented in 2015 called PEET, or plasmon energy expansion thermometry. The method determines temperature at the nanoscale by measuring changes in density with a transmission electron microscope.

In this specific case, the researchers placed nanoparticles of indium in the vicinity of the thermoelectric cooler. As the device cooled or heated, the indium correspondingly contracted or expanded. By measuring the density of indium, the temperature of the nano-cooler could be determined precisely.

“PEET has the spatial resolution to map thermal gradients at the few-nanometer scale—an almost unexplored regime for nanostructured thermoelectric materials,” said Regan.

The winning combination of semiconductors found by the UCLA physicists may one day be brought to the macro scale, enabling a new class of cooling devices with no moving parts that regulate temperature in telescopes, microelectronic devices, and other high-end devices. 

share Share

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Are Cyborg Jellyfish the Next Step of Deep Ocean Exploration?

We still know very little about our oceans. Can jellyfish change that?

Can AI help us reduce hiring bias? It's possible, but it needs healthy human values around it

AI may promise fairer hiring, but new research shows it only reduces bias when paired with the right human judgment and diversity safeguards.

Hidden for over a century, a preserved Tasmanian Tiger head "found in a bucket" may bring the lost species back from extinction

Researchers recover vital RNA from Tasmanian tiger, pushing de-extinction closer to reality.

Island Nation Tuvalu Set to Become the First Country Lost to Climate Change. More Than 80% of the Population Apply to Relocate to Australia Under World's First 'Climate Visa'

Tuvalu will likely become the first nation to vanish because of climate change.

Archaeologists Discover 6,000 Year Old "Victory Pits" That Featured Mass Graves, Severed Limbs, and Torture

Ancient times weren't peaceful by any means.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

A 5,000-Year-Old Cow Tooth Just Changed What We Know About Stonehenge

An ancient tooth reshapes what we know about the monument’s beginnings.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Rejoice! Walmart's Radioactive Shrimp Are Only a Little Radioactive

You could have a little radioactive shrimp as a treat. (Don't eat any more!)