homehome Home chatchat Notifications


Tasmanian tiger genome reveals new clues about its extinction but also surprising kinship to kangaroo

It was also particularly vulnerable to disease well before humans arrived in Australia.

Tibi Puiu
December 12, 2017 @ 12:44 am

share Share

Scientists have sequenced the genome of a Tasmanian tiger pup whose species went extinct more than 80 years ago. The findings offer not only new clues to the decline of this beloved species but also, surprisingly, show us that it was more related to the kangaroo than the dingo.

Thylacinus Cynocephalis. Credit: Public Domain.

Thylacinus Cynocephalis. Credit: Public Domain.

The thylacine (Thylacinus cynocephalus), commonly known as the Tasmanian tiger, was a peculiar species. It looked exactly like a dog or wolf, had the stripes of a tiger, but was a marsupial. That’s the kind of bizarre combination few places other than Australia can boast.

The story of the thylacine’s decline is inherently tied to that of humans. As soon as early hunter-gathers entered the picture, the latter was in trouble. As humans expanded across the continent, the range of the marsupial only declined. When humans introduced the dingo (Canis lupus dingo) to Australia several thousand years ago, the thylacine was almost wiped out by the competition. An isolated population could still be found in Tasmania though — but not for long.

In the 19th century, European colonists saw the marsupial predators as a pest that harmed their sheep. They paid a bounty of £1 per carcass, which placed the thylacine on the cusp of extinction.

In 1909, the bounties were ended but it was already too late. Only a couple of individuals remained, which were acquired by zoos. On 7 September 1936, the last Tasmanian tiger died in a zoo in Hobart, Australia.

With the last of its kind gone, science was left poorer. In the intervening years, however, some important things happened. Scientists discovered DNA and later, how to sequence it in ever greater detail and at a thinning cost.

A team led by Andrew Pask from the University of Melbourne sequenced the DNA from a thylacine pup who died in 1909 and has since been preserved in alcohol. The procedure enabled the researchers to obtain the nuclear genome of the Tasmanian tiger. Previously, geneticists had sequenced the species’ mitochondrial genome which is much shorter and is inherited only from the mother’s side.

The analysis revealed a steep drop in genetic diversity which suggests thylacine numbers first started to significantly drop some 70,000-120,000 years ago. That’s well before humans arrived on the continent.

A similar pattern was identified in the case of the Tasmanian devil (Sarcophilus harrisii). This can only mean that some environmental factors may have put pressure on the species living at the time, possibly a cooling climate which shrank their habitats.

Tasmanian tigers in the Hobart Zoo in Tasmania, Australia in 1933. Credit: Public Domain.

Tasmanian tigers in the Hobart Zoo in Tasmania, Australia in 1933. Credit: Public Domain.

Without a doubt, the single most important event that led to the extinction of the Tasmanian tiger was over-hunting. What the new findings suggest, however, is that the Tasmanian devil was susceptible to diseases regardless of human intervention — due to its inadequate genetic diversity. The marsupial might have most likely still been alive today were it not for humans but its weak genetic material only made it even more vulnerable.

Another important insight is that thylacines and canids — a group that includes dogs — share a common ancestor that lived about 160 million years ago. At the same time, the head shape of both thylacines and canids like dogs or wolves are remarkably similar. This suggests the two groups have adapted similarly to their predatory lifestyles, a form of convergent evolution. 

Pask and colleagues identified 81 genes in which both canids and thylacines had acquired similar DNA changes, uncoincidentally including some associated with roles in skull development. However, none of these identified genes seem to have evolved due to natural selection and, as such, are unlikely to be responsible for the species’ shared traits. Instead, DNA that influences gene expression, rather than protein sequencing, likely underlie the long snouts and other physiognomical features shared by the two groups.

“Their similarities are absolutely astounding because they haven’t shared a common ancestor since the Jurassic period, 160m years ago,” Pask said. 

“The appearance of the thylacine is almost a dingo with a pouch. And when we looked at the basis for this convergent evolution, we found that it wasn’t actually the genes themselves that produced the same skull and body shape, but the control regions around them that turn genes ‘on and off’ at different stages of growth.

Besides the wealth of new insight scientists have now garnered, this research might prove essential to a greater purpose — that of bringing the extinct species back from the dead. Some believe that modern genome editing and advances in reproductive biology such as artificial wombs can provide the necessary pathways to de-extinct certain species.

Such a prospect is interesting to fathom but we shouldn’t lose sight of the bigger picture. The Tasmanian tiger is dead, it’s long been so, and it’s entirely due to us.

The findings appeared in the journal Nature Ecology & Evolution

share Share

People Living Near Golf Courses Face Double the Risk of Parkinson’s

The strong pesticides sprayed on golf courses leech into the groundwater and scientists suspect this could increase the risk of Parkinson's.

He Let Snakes Bite Him Over 200 Times and Now Scientists Want His Blood for an Universal Antivenom

A universal snakebite treatment may be within reach, thanks to an unlikely human experiment.

These companies want to make hand bags out of T-rex leather. But scientists aren't buying it

A lab-grown leather inspired by dinosaur skin sparks excitement—and scientific skepticism

This car-sized "millipede" was built like a tank — and had the face to go with it

A Carboniferous beast is showing its face.

9 Environmental Stories That Don't Get as Much Coverage as They Should

From whales to soil microbes, our planet’s living systems are fraying in silence.

Scientists Find CBD in a Common Brazilian Shrub That's Not Cannabis

This wild plant grows across South America and contains CBD.

Spruce Trees Are Like Real-Life Ents That Anticipate Solar Eclipse Hours in Advance and Sync Up

Trees sync their bioelectric signals like they're talking to each other.

The Haast's Eagle: The Largest Known Eagle Hunted Prey Fifteen Times Its Size

The extinct bird was so powerful it could kill a 400-pound animal with its talons.

Miracle surgery: Doctors remove a hard-to-reach spinal tumor through the eye of a patient

For the first time, a deadly spinal tumor has been removed via the eye socket route.

A Lawyer Put a Cartoon Dragon Watermark on Every Page of a Court Filing and The Judge Was Not Amused

A Michigan judge rebukes lawyer for filing documents with cartoon dragon watermark