homehome Home chatchat Notifications


Spider-like ultra-sensitive sensor enhances human touch

Surgeons or astronauts could touch objects more naturally wearing gloves equipped with these sensors.

Tibi Puiu
February 18, 2020 @ 11:53 pm

share Share

The visually aided tactile enhancement system, VATES, applied for precise motion control. Credit: Rongrong Bao.

Humans are blessed with an incredibly tuned sense of touch, allowing us to manipulate objects with ease.

There are situations, however, when this sensitivity is impaired such as following an injury or while wearing gloves. This can turn out to be quite a problem for surgeons who often complain that they are unable to manipulate soft tissues with their gloves on as well as they’d like to. In space, astronauts have it much worse due to their cumbersome spacesuits that make maintenance extremely challenging during spacewalks on the International Space Station.

This is where newly reported advanced tactile sensors developed by researchers in China might come in.

The sensor is so sensitive it allows the wearer to detect the light brush of a feather, the touch of a flower petal, water droplets falling on a finger and even a wire too small to be seen.

The piezoresistive, crack-based sensor developed by researchers at the Chinese Academy of Sciences was inspired by a species of spider whose legs are equipped to sensing organs. The spider’s legs have a pattern of cracks, or slits, that allow the arachnid to detect even the faintest movements in its vicinity.

Similarly, the new ultrathin crack-based strain sensor, or UCSS, uses cracks formed in several thin layers of flexible polymer film coated with silver. The cracks in the silver coating generate parallel channels that conduct electricity and enabled the sensor to become highly sensitive to movement.

Trials performed by the researchers showed that thinner layers yielded sensors with higher sensitivity while thicker ones enabled a larger sensing range. After several tweaks, the researchers found a sweet spot with UCSSs made of 15-micron thick polymer layers and 37-nanometer thick silver coatings.

The capabilities of the UCSSs were incorporated into a visually aided tactile enhancement system, or VATES, by connecting them to a signal acquisition unit and visual readout device. This system is essentially an electronic skin that can relay tactile information.

Design and application of an ultrathin crack-based strain sensor array for spatial strain distribution mapping. Credit: Applied Physics Rewiew.

When the sensors were attached to gloves, either on the fingertips or on the back of the hand, they were able to detect tiny movements as a person moved the tip of their finger across various delicate surfaces. Tests also showed that the UCSSs were sensitive enough to detect subtle facial movements like smiling, frowning, and blinking.

Writing in the journal Applied Physics Review, the authors envision a variety of applications such as highly sensitive electronic whiskers, which can be used to map wind flow patterns, wearable sensors for heartbeat and pulse detection, or sensors on prosthetics to enhance the sense of touch.

“These results demonstrate the wide applications of our ultrathin strain sensor in e-skin and human-machine interfaces,” said co-author Caofeng Pan of the Beijing Institute of Nanoenergy and Nanosystems at the Chinese Academy of Sciences.

share Share

Doctors Discover 48th Known Blood Group and Only One Person on Earth Has It

A genetic mystery leads to the discovery of a new blood group: “Gwada negative.”

More Than Half of Intersection Crashes Involve Left Turns. Is It Time To Finally Ban Them?

Even though research supports the change, most cities have been slow to ban left turns at even the most congested intersections.

A London Dentist Just Cracked a Geometric Code in Leonardo’s Vitruvian Man

A hidden triangle in the vitruvian man could finally explain one of da Vinci's greatest works.

The Story Behind This Female Pharaoh's Broken Statues Is Way Weirder Than We Thought

New study reveals the ancient Egyptian's odd way of retiring a pharaoh.

China Resurrected an Abandoned Soviet 'Sea Monster' That's Part Airplane, Part Hovercraft

The Soviet Union's wildest aircraft just got a second life in China.

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

The spacecraft crashed into the Pacific Ocean after a parachute failure, ending a bold experiment in space biology and memorial spaceflight.

Ancient ‘Zombie’ Fungus Trapped in Amber Shows Mind Control Began in the Age of the Dinosaurs

The zombie fungus from the age of the dinosaurs.

Your browser lets websites track you even without cookies

Most users don't even know this type of surveillance exists.

What's Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

This season doesn’t have to be about comparison or self-criticism.

Why a 20-Minute Nap Could Be Key to Unlocking 'Eureka!' Moments Like Salvador Dalí

A 20-minute nap can boost your chances of a creative breakthrough, according to new research.