homehome Home chatchat Notifications


Ultra slim sound diffuser could greatly improve your cinema and theater experience

It does the same job, while being 10 times thinner and much cheaper.

Mihai Andrei
June 7, 2017 @ 5:34 pm

share Share

A joint effort from researchers at the North Carolina State University and Nanjing University has delivered a sound diffuser 10 times thinner than today’s products.

A conventional, two-dimensional conventional Schroeder diffuser (on the left), compared to a new, ‘ultra-thin’ two-dimensional Schroeder diffuser (at right). Image credits: Yun Jing et al, 2017.

In acoustics (and architecture), diffusion is the efficacy by which sound energy is spread evenly in a given environment. Perfect diffusion would mean that sounds are heard identically everywhere in the room. Naturally, there is no perfect diffusion and no perfect environment, but architects and acoustic engineers strive to be as close to perfection as possible. Basically, in a theater, a cinema, or in any constructions in which sound is important you want good diffusion. You want everyone to hear sounds similarly, with as few interference as possible.

In any room, the walls, ceilings, and all the objects in the room influence the acoustics of the room. They create echoes and overlapping sounds, which reduce the acoustic quality. This is where the sound diffusers step in.

“Sound diffusers are panels placed on the walls and ceiling of a room to scatter sound waves in many different directions, eliminating echoes and undesirable sound reflections – ultimately improving the quality of the sound,” says Yun Jing, an assistant professor of mechanical and aerospace engineering at NC State and corresponding author of a paper on the work.

Most common diffusers, called Schroeder diffusers, can be very bulky — and they need to be bulky. They need to be bulky because of the wavelengths they are trying to diffuse. A typical male’s voice has a frequency of 85 hertz, which translates to a wavelength of 4 meters or 13.1 feet. If that’s the lowest wavelength you have to diffuse, then you’d need a diffuser about half of that, so 2 meters (6.5 feet) thick. If you want to cover an even broader range of sounds, then you might need even bigger diffusers.

This is where the new research steps in. What Jing and his team did is to develop a diffuser that works just as good (if not better), but only needs to be 5 percent of the sound’s wavelength. This means that diffusers could be made much cheaper, and using way less material.

“Diffusers are often made out of wood, so our design would use 10 times less wood than the Schroeder diffuser design,” Yun Jing, an assistant professor of mechanical aerospace engineering at NC State and corresponding author of the study, said in a statement. “That would result in lighter, less expensive diffusers that allow people to make better use of their space.”

A representation of the physical characteristics of the new diffuser. Image credits: Yun Jing et al, 2017.

The diffuser consists of several evenly spaced squares, of different sizes, each opening up into a thin, underlying chamber. These chambers have identical sizes, but different apertures.

To make things even better, the fabrication process is also easy. Researchers have created diffusers using a 3D printer and will move on to develop wooden diffusers, which promise to be even cheaper.

Journal Reference: Yifan Zhu, Xudong Fan, Bin Liang, Jianchun Cheng, and Yun Jing — Ultrathin Acoustic Metasurface-Based Schroeder Diffuser. DOI:https://doi.org/10.1103/PhysRevX.7.021034

share Share

The Story Behind This Female Pharaoh's Broken Statues Is Way Weirder Than We Thought

New study reveals the ancient Egyptian's odd way of retiring a pharaoh.

China Resurrected an Abandoned Soviet 'Sea Monster' That's Part Airplane, Part Hovercraft

The Soviet Union's wildest aircraft just got a second life in China.

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

The spacecraft crashed into the Pacific Ocean after a parachute failure, ending a bold experiment in space biology and memorial spaceflight.

Ancient ‘Zombie’ Fungus Trapped in Amber Shows Mind Control Began in the Age of the Dinosaurs

The zombie fungus from the age of the dinosaurs.

Your browser lets websites track you even without cookies

Most users don't even know this type of surveillance exists.

What's Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

This season doesn’t have to be about comparison or self-criticism.

Why a 20-Minute Nap Could Be Key to Unlocking 'Eureka!' Moments Like Salvador Dalí

A 20-minute nap can boost your chances of a creative breakthrough, according to new research.

The world's oldest boomerang is even older than we thought, but it's not Australian

The story of the boomerang goes back in time even more.

Swarms of tiny robots could go up your nose, melt the mucus and clean your sinuses

The "search-and-destroy” microrobot system can chemically shred the resident bacterial biofilm.

What if Every Roadkill Had a Memorial?

Road ecology, the scientific study of how road networks impact ecosystems, presents a perfect opportunity for community science projects.