homehome Home chatchat Notifications


Scientists fix crucial flaw with solid-state batteries that could fully charge electric cars in 10 minutes

Solid state batteries could finally make electric vehicles truly competitive with conventional cars.

Tibi Puiu
May 17, 2021 @ 10:49 pm

share Share

Credit: Pixabay.

Lithium-metal batteries, also known as solid-state batteries due to the use of solid electrodes and a solid electrolyte, are seen as the next jump in battery tech. These devices promise to push the boundaries and limitations of current lithium-ion batteries, thereby solving a lot of problems we have with electric vehicles (EV) today. The problem is that this technology is still experimental and the prototypes we’ve seen so far haven’t been stable enough for mainstream use — until now.

In a new study, researchers at  Harvard University’s School of Engineering and Applied Science (SEAS) have described how they’ve solved an inherent flaw in solid-state batteries, making them much more stable. If all is confirmed in the future, this technology could be used to increase the lifetime of electric vehicles to that of gasoline cars, in the 10 to 15 years range, without the need to replace the battery. What’s more, due to its very high current density, a solid-state battery can fully charge an EV within 10-20 minutes.

This is really a game-changing technology since ‘range anxiety’ (the fear that you won’t be able to charge your EV while on the road in an acceptable time frame) and concerns over lithium-ion battery lifetimes are some of the main reasons why prospective car buyers are hesitant to switch to EV. But once solid-state batteries enter the picture, the adoption rate for EVs is bound to skyrocket, leaving gasoline-powered vehicles in the dust, just like the horse and buggy were made obsolete at the turn of the last century.

Fixing a 40-year problem plaguing solid-state batteries

The breakthrough involves a multi-layer approach to assembling the solid-state battery, allowing it to be self-healing and solve the issue of degradation that plagued previous generations.

Unlike lithium-ion batteries, solid-state batteries do not contain heavy liquid electrolytes. Instead, a solid electrolyte is used that can be in the form of glass, ceramics, or other solid materials. Without the need for a liquid, solid-state batteries can be much denser and compact, translating in more range.

Solid-state batteries aren’t new. They’ve been around for decades, with applications including powering pacemakers, wearables, and RFIDs. But heavy-duty applications such as automobiles or even laptops have not been possible thus far due to a number of limitations.

Just like other emerging technologies, solid-state batteries are, for the time being, prohibitively expensive due to development costs and difficulties in manufacturing at scale.

What’s more, solid-state batteries have an inherent chemical flaw. They degrade fast after a number of charge-discharge cycles due to the accumulation of lithium dendrites — thin, tree-like pieces of lithium that branch out and can pierce the battery, thereby causing short circuits and other problems. The only solution is to replace the battery since the lithium metal anode is compromised. A lot of research has been poured into solving this problem, with not much to show for it.

“A lithium-metal battery is considered the holy grail for battery chemistry because of its high capacity and energy density,” said Xin Li, associate professor of materials science at the Harvard John A. Paulson School of Engineering and Applied Science (SEAS). “But the stability of these batteries has always been poor.”

An electrolyte sandwich

Now, researchers at Harvard University may have cracked this puzzle. They have employed a multilayer design that fills in any generated cracks with “dynamically generated decompositions”. Dendrites still form but this design prevents the penetration of lithium dendrites by controlling and containing them.

“Our multilayer design has the structure of a less-stable electrolyte sandwiched between more-stable solid electrolytes, which prevents any lithium dendrite growth,” wrote the researchers who likened their design to that of a BLT sandwich. Seriously.

The bread represents the lithium-metal anode, the lettuce is conductive graphite, the tomatoes represent the juicy first electrolyte, while the bacon is the second electrolyte. Credit: Harvard SEAS.

The first electrolyte is more stable with lithium but more prone to dendrite penetration. The second electrolyte layer is less stable but cannot be breached by the dendrites. So the dendrites can grow and accumulate through the lettuce and tomato, but stop at the bacon.

“Our strategy of incorporating instability in order to stabilize the battery feels counterintuitive but just like an anchor can guide and control a screw going into a wall, so too can our multilayer design guide and control the growth of dendrites,” said Luhan Ye, co-author of the paper and graduate student at SEAS.

“The difference is that our anchor quickly becomes too tight for the dendrite to drill through, so the dendrite growth is stopped,” Li added.

During tests, these multilayer solid-state batteries held 82% of their charge after 10,000 cycles, which is competitive with the lifetime of a fossil fuel-powered car.

The implications are immense. If such a battery can be manufactured at scale, it could dramatically improve the range and, most importantly, charging time for EVs.  Toyota aims to sell its first EV powered by a solid-state battery before 2030, while several other automakers are working in partnership with battery producers on their own projects. Volkswagen, for instance, announced a partnership with California-based QuantumScape to push these batteries into commercial use by 2024.

“This proof-of-concept design shows that lithium-metal solid-state batteries could be competitive with commercial lithium-ion batteries,” said Li. “And the flexibility and versatility of our multilayer design makes it potentially compatible with mass production procedures in the battery industry. Scaling it up to the commercial battery won’t be easy and there are still some practical challenges, but we believe they will be overcome.”

share Share

Hidden for over a century, a preserved Tasmanian Tiger head "found in a bucket" may bring the lost species back from extinction

Researchers recover vital RNA from Tasmanian tiger, pushing de-extinction closer to reality.

Island Nation Tuvalu Set to Become the First Country Lost to Climate Change. More Than 80% of the Population Apply to Relocate to Australia Under World's First 'Climate Visa'

Tuvalu will likely become the first nation to vanish because of climate change.

Archaeologists Discover 6,000 Year Old "Victory Pits" That Featured Mass Graves, Severed Limbs, and Torture

Ancient times weren't peaceful by any means.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

A 5,000-Year-Old Cow Tooth Just Changed What We Know About Stonehenge

An ancient tooth reshapes what we know about the monument’s beginnings.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

Researchers finally control the fermentation process that can make or break chocolate.

Rejoice! Walmart's Radioactive Shrimp Are Only a Little Radioactive

You could have a little radioactive shrimp as a treat. (Don't eat any more!)

Newly Found Stick Bug is Heavier Than Any Insect Ever Recorded in Australia

Bigger than a cockroach and lighter than a golf ball, a giant twig emerges from the misty mountains.

Chevy’s New Electric Truck Just Went 1,059 Miles on a Single Charge and Shattered the EV Range Record

No battery swaps, no software tweaks—yet the Silverado EV more than doubled its 493-mile range. How’s this possible?