ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists create silk fiber that mimics Spider-Man’s web-slinging powers

This lab-made silk fiber can lift objects 80 times its weight.

Rupendra BrahambhattbyRupendra Brahambhatt
October 18, 2024
in Chemistry, News
A A
Edited and reviewed by Tibi Puiu
Share on FacebookShare on TwitterSubmit to Reddit
Credit: Wallpapers Dot Com.

It sounds like something out of a comic book: a material that shoots from a needle and solidifies into a fiber capable of lifting objects 80 times its own weight. But we’re not talking fiction here.

Researchers at Tufts University’s Silklab have developed a silk-based sticky fluid that instantly turns into a fibrous material when ejected, evoking the gravity-defying, web-slinging powers of the iconic Spider-Man.

However, as much as you may want to channel your inner superhero, it’s not yet strong enough to carry a person across the city skyline. Still, for the first time, we have a real web-slinging technology.  

“As scientists and engineers, we navigate the boundary between imagination and practice. That’s where all the magic happens,” Fiorenzo G. Omenetto, one of the study authors and director of Silklab, said.

“We can be inspired by nature. We can be inspired by comics and science fiction. In this case, we wanted to reverse engineer our silk material to behave the way nature originally designed it, and comic book writers imagined it,” he added.

Making of the Spider-Man silk fiber

The creation of the silk fiber came about by accident. Marco Lo Presti, who is the lead study author and an assistant professor at Tufts University was trying to create powerful adhesives using silk fibroin, the protein produced by silkworms (Bombyx mori) that gives silk its strength and flexibility. This is when he noticed something unusual.

“While I was cleaning my glassware (containing silk fibroin) with acetone, I noticed a web-like material forming on the bottom of the glass,” Marco Lo Presti, said.

He discovered that when mixed with acetone, silk fibroin turns into a semi-solid hydrogel. Add some dopamine to this mix, and the liquid solution almost instantly solidifies into sticky silk fibers when exposed to air. This improved the fiber’s adhesiveness and tensile strength significantly.

However, Presti and his team didn’t stop there. They wanted to further enhance the properties of this material, so they added chitosan. It increased the adhesiveness and tensile strength of the spider-man-inspired silk fiber by 18 and 200 times, respectively. Chitosan is a naturally occurring substance found in the shells of insects and crustaceans. It is non-toxic, biodegradable, and used as a preservative in various medicine and food items.

Next, they created a small device with a needle that shot the silk liquid toward any object a user wanted to grab. During the testing, they successfully lifted steel bolts using the silk fiber. The bolts were 12 cm (5 inches) away from the needle and weighed about 80 times more than the silk fiber. 

RelatedPosts

Eco-friendly artificial spider silk mimics one of nature’s strongest materials
Spider silk-inspired wire extends like a solid, but compresses like a liquid
Bacteria coaxed into making high-performance proteins for space missions
Scientists unravel mysteries of unique Aussie spider silk

“We are demonstrating a way to shoot a fiber from a device, then adhere to and pick up an object from a distance. Rather than presenting this work as a bio-inspired material, it’s really a superhero-inspired material,” Presti said. 

Why not use spider silk?

Silk fiber holding a glass bottle. Image credits: Marco Lo Presti

While this new material draws comparisons to Spider-Man’s web-slinging, the researchers worked with silk from silkworms — like the kind you find in clothing — rather than spider silk.

Spider silk is one of the strongest natural substances, even exceeding steel in strength relative to its weight. And compared to silk fibroin from silkworms, spider silk is nearly a thousand times stronger, durable, and flexible.

However, what makes the silk fiber special is that it solidifies very fast, and since it is made in a lab, scientists have complete control over its properties. They can modify the adhesiveness and strength of the material based on the requirements — making it an attractive option for numerous applications including soft robots, industrial adhesives, drug delivery, biodegradable sensors, tissue engineering, etc.

In contrast, natural spider silk does not have a single formula for its production, as its properties can vary widely among different spider species. Previous efforts to make artificial spider silk have been disappointing and several promising spider silk-based startups have folded over the years.

The researchers now plan to further enhance the properties of their silk fiber. While swinging between skyscrapers may still be a distant fantasy, the possibilities in material science are looking stronger than ever.

The study is published in the journal Advanced Functional Materials.

Tags: silksilk fiberspider manspider silk

ShareTweetShare
Rupendra Brahambhatt

Rupendra Brahambhatt

Rupendra Brahambhatt is an experienced journalist and filmmaker covering culture, science, and entertainment news for the past five years. With a background in Zoology and Communication, he has been actively working with some of the most innovative media agencies in different parts of the globe.

Related Posts

A spider weaving its web.
Biology

To Spin Silk Five Times Stronger Than Steel, Spiders Perform a Stretching Trick

byRupendra Brahambhatt
2 months ago
Chemistry

Bacteria turns plastic waste into super-strong spider silk

byTibi Puiu
1 year ago
Biology

Scientists unravel mysteries of unique Aussie spider silk

byMihai Andrei
5 years ago
Environment

This fashionable ski jacket is made from spider silk grown by bacteria

byTibi Puiu
6 years ago

Recent news

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

May 21, 2025

How One Man and a Legendary Canoe Rescued the Dying Art of Polynesian Navigation

May 21, 2025

A Swedish Library Forgot to Close Its Doors and Something Beautiful Happened

May 21, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.