homehome Home chatchat Notifications


Self-healing metal can repair itself just like human skin

Under certain conditions, some metals can fuse back together, filling cracks in the material.

Tibi Puiu
July 21, 2023 @ 9:41 pm

share Share

Self-healing metal
Green marks the spot where a fissure formed, then fused back together in this artistic rendering of nanoscale self-healing in metal. Credit: Dan Thompson.

You might think that self-healing metal is something out of science fiction, perhaps like the shape-shifting android in Terminator 2: Judgment Day. But guess what? It’s now a scientific reality.

In an exciting new study, scientists have successfully demonstrated self-healing properties in certain metals, paving the way for innovative applications in the near future. Imagine bridges, vehicles, or any mechanical parts subjected to wear and tear that can ‘fix’ themselves.

A happy accident

Metal fatigue, a phenomenon where microscopic cracks develop in metals subjected to repeated stress, has been a long-standing challenge in engineering. This damage tends to worsen over time and can lead to disastrous consequences in critical areas like aviation and infrastructure. But recent experiments conducted at the Sandia National Laboratories in New Mexico may forever change how engineers tackle this kind of defect.

Researchers led by Brad Boyce were studying metal fatigue in platinum when they serendipitously noticed that cracks in the material were repaired without their intervention. Using tiny metal pieces made of pure platinum and copper, the researchers pulled the material from each side at an astonishing rate of 200 times per second. As expected, cracks began to form and spread. However, around 40 minutes into the experiment, the metal pieces spontaneously fused back together.

“This was absolutely stunning to watch first-hand,” said Boyce. “What we have confirmed is that metals have their own intrinsic, natural ability to heal themselves, at least in the case of fatigue damage at the nanoscale.”

This process is known as cold welding. Everything occurs at the nanoscale, meaning it’s not visible to the human eye. Cold welding occurs when two pieces of metal, whose surfaces must be smooth and clean, come together, forming atomic bonds that facilitate self-repair. Essentially, it allows you to weld metals without heat. But now scientists have shown that this process can happen spontaneously without careful preparation, which opens up a world of new applications.

The metal pieces used in the experiments were approximately 40 nanometers thick and a few micrometers wide. While the healing was observed in platinum and copper, simulations suggest that this phenomenon could occur in other metals as well. The possibility of applying this breakthrough to materials tailored for specific purposes has scientists buzzing with excitement.

Electron microscopy.
Researchers used transmission electron microscopy to study metal fatigue cracks down to the nanoscale, which is invisible to the human eye. Credit: Craig Fritz.

For instance, engineers could design bridges or sensitive infrastructure to specifically facilitate spontaneous cold welding, greatly enhancing their service life. Moreover, this newfound understanding may shed light on fatigue failure in existing structures, potentially enhancing our ability to interpret and predict such issues.

In the past, scientists have dabbled with self-healing materials, mainly focusing on plastics. However, study co-author Michael Demkowicz, a materials science and engineering professor at Texas A&M University, foresaw the potential for self-healing in metals a decade ago. And now, with this successful research, his predictions have come true.

“My hope is that this finding will encourage materials researchers to consider that, under the right circumstances, materials can do things we never expected,” said Demkowicz.

While it’s too soon to see tangible applications, the researchers believe that within the next decade, we might witness real-world use of self-healing metals. Although this is not exactly akin to the shape-shifting androids we see in science fiction, it’s a significant step towards materials that can heal themselves, much like organic tissues such as human skin.

As an important caveat, the experiments were conducted in a vacuum using an electron microscope, scientists are keen to explore if the process also occurs in a normal air atmosphere. Regardless, the findings have profound implications for metal fatigue in space vehicles and subsurface cracks that aren’t exposed to the atmosphere.

The future of self-healing metals holds immense promise for a wide range of industries and applications. As scientists delve deeper into this fascinating field, we can look forward to a world where materials can repair themselves, making machines and structures more robust and reliable.

The findings appeared in the journal Nature.

share Share

Can AI help us reduce hiring bias? It's possible, but it needs healthy human values around it

AI may promise fairer hiring, but new research shows it only reduces bias when paired with the right human judgment and diversity safeguards.

Hidden for over a century, a preserved Tasmanian Tiger head "found in a bucket" may bring the lost species back from extinction

Researchers recover vital RNA from Tasmanian tiger, pushing de-extinction closer to reality.

Island Nation Tuvalu Set to Become the First Country Lost to Climate Change. More Than 80% of the Population Apply to Relocate to Australia Under World's First 'Climate Visa'

Tuvalu will likely become the first nation to vanish because of climate change.

Archaeologists Discover 6,000 Year Old "Victory Pits" That Featured Mass Graves, Severed Limbs, and Torture

Ancient times weren't peaceful by any means.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

A 5,000-Year-Old Cow Tooth Just Changed What We Know About Stonehenge

An ancient tooth reshapes what we know about the monument’s beginnings.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Rejoice! Walmart's Radioactive Shrimp Are Only a Little Radioactive

You could have a little radioactive shrimp as a treat. (Don't eat any more!)

Newly Found Stick Bug is Heavier Than Any Insect Ever Recorded in Australia

Bigger than a cockroach and lighter than a golf ball, a giant twig emerges from the misty mountains.

Chevy’s New Electric Truck Just Went 1,059 Miles on a Single Charge and Shattered the EV Range Record

No battery swaps, no software tweaks—yet the Silverado EV more than doubled its 493-mile range. How’s this possible?