homehome Home chatchat Notifications


Self-healing metal can repair itself just like human skin

Under certain conditions, some metals can fuse back together, filling cracks in the material.

Tibi Puiu
July 21, 2023 @ 9:41 pm

share Share

Self-healing metal
Green marks the spot where a fissure formed, then fused back together in this artistic rendering of nanoscale self-healing in metal. Credit: Dan Thompson.

You might think that self-healing metal is something out of science fiction, perhaps like the shape-shifting android in Terminator 2: Judgment Day. But guess what? It’s now a scientific reality.

In an exciting new study, scientists have successfully demonstrated self-healing properties in certain metals, paving the way for innovative applications in the near future. Imagine bridges, vehicles, or any mechanical parts subjected to wear and tear that can ‘fix’ themselves.

A happy accident

Metal fatigue, a phenomenon where microscopic cracks develop in metals subjected to repeated stress, has been a long-standing challenge in engineering. This damage tends to worsen over time and can lead to disastrous consequences in critical areas like aviation and infrastructure. But recent experiments conducted at the Sandia National Laboratories in New Mexico may forever change how engineers tackle this kind of defect.

Researchers led by Brad Boyce were studying metal fatigue in platinum when they serendipitously noticed that cracks in the material were repaired without their intervention. Using tiny metal pieces made of pure platinum and copper, the researchers pulled the material from each side at an astonishing rate of 200 times per second. As expected, cracks began to form and spread. However, around 40 minutes into the experiment, the metal pieces spontaneously fused back together.

“This was absolutely stunning to watch first-hand,” said Boyce. “What we have confirmed is that metals have their own intrinsic, natural ability to heal themselves, at least in the case of fatigue damage at the nanoscale.”

This process is known as cold welding. Everything occurs at the nanoscale, meaning it’s not visible to the human eye. Cold welding occurs when two pieces of metal, whose surfaces must be smooth and clean, come together, forming atomic bonds that facilitate self-repair. Essentially, it allows you to weld metals without heat. But now scientists have shown that this process can happen spontaneously without careful preparation, which opens up a world of new applications.

The metal pieces used in the experiments were approximately 40 nanometers thick and a few micrometers wide. While the healing was observed in platinum and copper, simulations suggest that this phenomenon could occur in other metals as well. The possibility of applying this breakthrough to materials tailored for specific purposes has scientists buzzing with excitement.

Electron microscopy.
Researchers used transmission electron microscopy to study metal fatigue cracks down to the nanoscale, which is invisible to the human eye. Credit: Craig Fritz.

For instance, engineers could design bridges or sensitive infrastructure to specifically facilitate spontaneous cold welding, greatly enhancing their service life. Moreover, this newfound understanding may shed light on fatigue failure in existing structures, potentially enhancing our ability to interpret and predict such issues.

In the past, scientists have dabbled with self-healing materials, mainly focusing on plastics. However, study co-author Michael Demkowicz, a materials science and engineering professor at Texas A&M University, foresaw the potential for self-healing in metals a decade ago. And now, with this successful research, his predictions have come true.

“My hope is that this finding will encourage materials researchers to consider that, under the right circumstances, materials can do things we never expected,” said Demkowicz.

While it’s too soon to see tangible applications, the researchers believe that within the next decade, we might witness real-world use of self-healing metals. Although this is not exactly akin to the shape-shifting androids we see in science fiction, it’s a significant step towards materials that can heal themselves, much like organic tissues such as human skin.

As an important caveat, the experiments were conducted in a vacuum using an electron microscope, scientists are keen to explore if the process also occurs in a normal air atmosphere. Regardless, the findings have profound implications for metal fatigue in space vehicles and subsurface cracks that aren’t exposed to the atmosphere.

The future of self-healing metals holds immense promise for a wide range of industries and applications. As scientists delve deeper into this fascinating field, we can look forward to a world where materials can repair themselves, making machines and structures more robust and reliable.

The findings appeared in the journal Nature.

share Share

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.

British archaeologists find ancient coin horde "wrapped like a pasty"

Archaeologists discover 11th-century coin hoard, shedding light on a turbulent era.

Astronauts May Soon Eat Fresh Fish Farmed on the Moon

Scientists hope Lunar Hatch will make fresh fish part of space missions' menus.

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

A New Type of Rock Is Forming — and It's Made of Our Trash

At a beach in England, soda tabs, zippers, and plastic waste are turning into rock before our eyes.

A LiDAR Robot Might Just Be the Future of Small-Scale Agriculture

Robots usually love big, open fields — but most farms are small and chaotic.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.