homehome Home chatchat Notifications


Scientists make plastic self-cleaning surface that repels even the worst superbugs

The material was inspired by the self-cleaning lotus leaf.

Tibi Puiu
December 13, 2019 @ 10:07 pm

share Share

Credit: McMaster University

Researchers at McMaster University in Canada made a self-cleaning plastic surface that repels most substances, like blood, water, and other liquids, but also some of the most dangerous antibiotic-resistant bacteria. The transparent plastic wrap is ideal for packaging food or insulating surfaces that are vulnerable to contamination, such as those found in hospitals or kitchens.

The material is basically a conventional transparent wrap that went through chemical treatment and some nanoscale alterations to its surface.

In fact, the self-cleaning material was heavily inspired by the lotus leaf, whose surface naturally repels liquids — a process known as superhydrophobicity. Just like the lotus leaf, the new material has a roughened surface — a wrinkled texture that creates miniature air pockets, minimizing the contact area between the surface and a liquid, almost like standing on a bed of needles.

“We’re structurally tuning that plastic,” said Leyla Soleymani , an engineering physicist at McMaster. “This material gives us something that can be applied to all kinds of things.”

Researchers further enhanced the plastic wrap’s repelling properties through a chemical treatment.

The resulting material acts as a firm barrier against even the meanest superbugs. For instance, it could be wrapped around door handles, railings, and any surface that typically attracts bacteria like MRSA, E. coli, Salmonella, and C. difficile.

“We can see this technology being used in all kinds of institutional and domestic settings,” Didar says. “As the world confronts the crisis of anti-microbial resistance, we hope it will become an important part of the anti-bacterial toolbox.”

The researchers verified the effectiveness of the material by spraying two of the most challenging strains of antibiotic-resistant bacteria onto it. An analysis performed with an electron microscope showed no trance of bacterial transfer on the surface of the material.

In the future, the researchers hope to bring their product to market by partnering with select industry partners.

The findings appeared in the journal ACS Nano.

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.