homehome Home chatchat Notifications


Scientists make cheap energy-storing capacitors from ancient materials

In an innovative blend of old and new, MIT engineers have designed an energy-storing supercapacitor using time-tested materials.

Tibi Puiu
July 31, 2023 @ 11:14 pm

share Share

supercapacitor
Credit: MIT.

Ever imagine your home’s concrete foundation or the roadway beneath your tires could store energy? A team at MIT has not only imagined it but is already developing a solution to make it a reality. By merging cement, carbon black, and water, they’ve created a supercapacitor that could revolutionize how we store energy from renewable sources.

Reimagining common materials into high-tech energy storage devices

Often, answers to the most complex problems can be found by delving into the past. Cement, an age-old construction material, and carbon black, akin to fine charcoal, have been repurposed by MIT engineers to form the base of an innovative energy storage system.

How does it work? By combining cement, carbon black, and water, the team created a supercapacitor — think of it as a battery alternative — that can store electrical energy. For instance, your house’s concrete foundation could become an energy storage unit, capable of keeping a day’s worth of energy on standby.

You might be wondering how simple materials like cement and carbon black can morph into a high-tech energy storage device. To begin with, supercapacitors aren’t as complex as they might sound. Essentially, they are capacitors with a heightened capacity to store charges.

A capacitor is made up of two conductive plates submerged in an electrolyte and separated by a membrane. When a voltage is applied, the positively charged ions from the electrolyte gather on the negatively charged plate and vice versa, creating an electric field that can be stored and swiftly delivered when required.

But what makes the supercapacitors developed by the MIT team different? The cement-based material they’ve created has a dense, interconnected network of conductive material, resulting in a high internal surface area. By introducing carbon black into the cement-water mixture and allowing it to cure, the water reacts with the cement to form a branching network of openings. The carbon black infiltrates these spaces, creating wire-like structures within the hardened cement, essentially turning the material into a supercapacitor.

“The material is fascinating because you have the most-used manmade material in the world, cement, that is combined with carbon black, that is a well-known historical material — the Dead Sea Scrolls were written with it,” says co-author Admir Masic, a chemist at MIT’s Civil and Environmental Engineering Department.

“You have these at least two-millennia-old materials that when you combine them in a specific manner you come up with a conductive nanocomposite, and that’s when things get really interesting.”

Renewable energy reimagined

cement supercapacitor
MIT engineers have created a “supercapacitor” made of ancient, abundant materials, that can store large amounts of energy. Credit: Franz-Josef Ulm, Admir Masic, and Yang-Shao Horn.

This kind of novel storage solution can significantly impact how we use renewable energy. Consider this: the main sources of renewable energy, like wind, solar, and tidal power, generate output at variable times. These times often do not align with peak electricity usage, necessitating the development of efficient energy storage systems.

Professor Franz-Josef Ulm, one of the leading MIT researchers, believes their technology is exceptionally promising, particularly because of the ubiquity of cement. A 45-cubic-meter block of this material could store up to 10 kilowatt-hours of energy, enough to power a household for a day. Plus, supercapacitors can be charged and discharged faster than batteries, making them more efficient.

The MIT researchers proved this is possible by building a tiny supercapacitor, made using this new method and measuring only about 1 centimeter in diameter and 1 millimeter in thickness. Each of these small supercapacitors could be charged to 1 volt, akin to a 1-volt battery.

The team successfully connected three of these supercapacitors to power a 3-volt light-emitting diode (LED). With this proof of concept, they now have plans to construct larger versions, starting with units resembling typical 12-volt car batteries and eventually progressing to a colossal 45-cubic-meter version that can store enough energy to power an entire house.

“You can go from 1-millimeter-thick electrodes to 1-meter-thick electrodes, and by doing so basically you can scale the energy storage capacity from lighting an LED for a few seconds, to powering a whole house,” Ulm said.

The applications of these massive supercapacitors stretch beyond powering households. Imagine concrete roadways storing solar energy and wirelessly charging electric vehicles passing by. This concept is already being developed in Germany and the Netherlands using standard batteries.

For structures away from grid power, such as remote homes or shelters, the cement supercapacitors could be charged by solar panels. The best part? According to Ulm, the system is scalable. The energy-storage capacity increases with the volume of the electrodes. By adjusting the mixture based on the desired properties for a specific application, the system can be tuned for optimal performance.

The researchers hope this innovation will usher in a new era for concrete in the energy transition, transforming it from a traditional construction material to a multifunctional component of our energy future.

The findings appeared in the Proceedings of the National Academy of Sciences.

share Share

Can AI help us reduce hiring bias? It's possible, but it needs healthy human values around it

AI may promise fairer hiring, but new research shows it only reduces bias when paired with the right human judgment and diversity safeguards.

Hidden for over a century, a preserved Tasmanian Tiger head "found in a bucket" may bring the lost species back from extinction

Researchers recover vital RNA from Tasmanian tiger, pushing de-extinction closer to reality.

Island Nation Tuvalu Set to Become the First Country Lost to Climate Change. More Than 80% of the Population Apply to Relocate to Australia Under World's First 'Climate Visa'

Tuvalu will likely become the first nation to vanish because of climate change.

Archaeologists Discover 6,000 Year Old "Victory Pits" That Featured Mass Graves, Severed Limbs, and Torture

Ancient times weren't peaceful by any means.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

A 5,000-Year-Old Cow Tooth Just Changed What We Know About Stonehenge

An ancient tooth reshapes what we know about the monument’s beginnings.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Rejoice! Walmart's Radioactive Shrimp Are Only a Little Radioactive

You could have a little radioactive shrimp as a treat. (Don't eat any more!)

Newly Found Stick Bug is Heavier Than Any Insect Ever Recorded in Australia

Bigger than a cockroach and lighter than a golf ball, a giant twig emerges from the misty mountains.

Chevy’s New Electric Truck Just Went 1,059 Miles on a Single Charge and Shattered the EV Range Record

No battery swaps, no software tweaks—yet the Silverado EV more than doubled its 493-mile range. How’s this possible?