homehome Home chatchat Notifications


Scientists find chemical clues that may unravel the secret to the superior sound of Stradivarius violins

A hidden layer between the wood and varnish of Stradivarius violins may contribute to their signature heavenly sound.

Tibi Puiu
October 27, 2022 @ 12:50 pm

share Share

Stradivarius violin in the royal palace in Madrid. Credit: Wikimedia Commons.

Violin craftsmanship reached its peak in the 18th century during what would come to be known as the Cremonese period, or the golden age of violin making. During this time, Italian families like Amati, Stradivari, and Guarneri were in high demand to deliver the finest violins, meant to be played in the most important concert halls of Europe. To this day, these instruments crafted more than 300 years ago represent the gold standard for violin making, the most famous and coveted being the Stradivarius violins. Their price tag hovering in the $10 million range is an indicator of how much musicians and the art world at large prize them.

But what makes these instruments sound so heavenly and why haven’t other violin makers been able to replicate the manufacturing process? In a new study, researchers in Italy looked for chemical clues in the finishing of these masterpieces, which is believed to play a key role in their aesthetic sound. The analysis revealed a previously unknown protein-based layer between the wood and the varnish.

The chemistry of the sound of perfection

Researchers revealed a protein-based layer between the wood and the varnish coating of these two Stradivarius violins. Credit: Analytical Chemistry 2022.

Researchers led by Lisa Vaccari and Marco Malagodi were fortunate enough to gain access to two Stradivarius violins, the San Lorenzo 1718 and the Toscano 1690. They peered inside the precious instruments under synchrotron radiation Fourier-transform infrared spectromicroscopy, a non-invasive technique that allowed the researchers to identify an intermediary layer between the varnish and the adjacent wood without ever laying a finger on the samples themselves.

However, while this technique told the scientists something was there, it didn’t reveal any information about what it was made of. To answer this important question, the researchers turned to infrared scattering-type scanning near-field microscopy (IR s-SNOM), which involves highly sensitive microscopes that take many snapshots of just tens of nanometers across and measure the infrared light scattered by the material. Since this infrared signal is contingent on the underlying chemical makeup of the material, the analysis could reveal the exact nature of the intermediate layer: protein-based compounds distributed in nano-sized patches.

The findings reported in the journal Analytical Chemistry are a great step up in scientists’ quest to demystify Antonio Stradivari’s secret manufacturing process. However, there doesn’t seem to be one single feature that is responsible for the signature sound of these violations, rather every bit of craftsmanship acts in synergy to produce an effect that is greater than the sum of its parts.

In 2015, MIT engineers and violinmakers at the North Bennet Street School in Boston built digital models of hundreds of Cremonese-era violins and used them to make an evolutionary model, in which craftsmanship error represented ‘mutations’. Through a lot of trial and error, Cremonese masters exploited ‘happy accidents’ and found that an elongated “f” shape for the opening of the resonance chamber and a specific thickness of the back of the violin produced the most pleasant overall sound.

Geometry, however, is only part of the puzzle. Scientists at the National Taiwan University analyzed the chemistry of the wood of several Stradivarius violins, finding that the aged and treated maple wood had very different properties from that used to make modern instruments. And even earlier, in 2006, biochemists at Texas A&M University discovered the chemicals inside the varnish of Stradivarius violins:  salts of copper, iron, and chromium. These chemicals are known to be excellent wood preservers but may also alter the acoustic properties of the instrument.

Of the more than 1,200 instruments built by Stradivari over his 60-year career, about 500 are still in circulation today. This makes them more like old Italian paintings that are cherished for their historical and cultural value. The fact that they are still played in concert halls across the world after all these years is mind boggling but also makes it all the more compelling for scientists to replicate their original craftsmanship. 

share Share

Inside Palantir: The Secretive Tech Company Helping the US Government Build a Massive Web of Surveillance

Government agencies are contracting with Palantir to correlate disparate pieces of data, promising efficiency but raising civil liberties concerns.

This Chihuahua Munched on a Bunch of Cocaine (and Fentanyl) and Lived to Tell the Tale

This almost-tragic event could have a very useful side.

Old Solar Panels Built in the Early 1990s Are Still Going Strong After 30 Years at 80% Original Power — And That’s a Big Deal for Our Energy Future

Thirty years later, old-school solar panels are still delivering on their promise.

The World’s Largest Solar Plant is Rising in Tibet. It's So Vast It's the Size of Chicago

A desert covered in solar panels and sheep could mark the beginning of the end for coal in China.

A Swiss Pilot Flew a Solar-Electric Aircraft to the Edge of the Stratosphere

A record-breaking flight offers a glimpse into the future of clean aviation

This Newly Discovered Croc Hunted Dinosaurs Before the Asteroid Hit

A new hypercarnivorous crocodyliform emerges from the sediments of Patagonia.

How Tariffs Could Help Canada Wean Itself from Fossil Fuels

Tariffs imposed by the U.S. could give its trading partners space to reduce their economies’ dependence on oil and gas.

The World Map We Learned in School is Wildly Misleading and Africa Wants It Gone

Maps help shape how we make sense of the world.

Spiders Are Trapping Fireflies in Their Webs and Using Their Glow to Lure Fresh Prey

Trapped fireflies become bait in a rare case of predatory outsourcing.

A Single Mutation Made Horses Rideable and Changed Human History

Ancient DNA reveals how a single mutation reshaped both horses and human history.