homehome Home chatchat Notifications


Scientists devise self-navigating cane for visually impaired

It uses the same tech as self-driving cars.

Tibi Puiu
October 14, 2021 @ 7:30 pm

share Share

Credit: Andrew Brodhead.

Personal navigation has come a long way since asking a stranger for directions was one of your best bets for reaching an unknown destination. With GPS and the world wide web at our fingertips, finding your way around has never been easier, even when traveling to a foreign country. The visually impaired, however, have not been able to enjoy the benefits of this remarkable technology, many being restricted to walking canes whose design and functionality have changed much.

Researchers at Stanford University want to flip this paradigm on its head. Taking cues from the same obstacle-detecting technology that allows autonomous cars to travel on busy roads without human input, the researchers have devised a high-tech yet affordable walking cane that similarly helps the visually impaired to navigate their environment.

The augmented cane features a number of sensors and is largely made from off-the-shelf parts. The navigation software is based on open-source code. In fact, anyone can assemble their own version of this augmented cane as the study comes with a list of parts and soldering instructions, perhaps for a friend or relative who would find one useful.

“We wanted something more user-friendly than just a white cane with sensors,” says Patrick Slade, a graduate research assistant in the Stanford Intelligent Systems Laboratory. “Something that cannot only tell you there’s an object in your way, but tell you what that object is and then help you navigate around it.”

Credit: Andrew Brodhead.

This isn’t the first smart walking cane, but it’s probably the most versatile and affordable on the market right now. According to the study’s authors, other canes with similar functionalities can weigh up to 50 pounds (22 kg) and cost at least $6,000. In contrast, the Stanford design only weighs 3 pounds (1.3 kg) and its parts cost $400.

The parts include a LIDAR sensor, a 3D laser scanning technology originally developed in the early 1960s for submarine detection from an aircraft. It works by generating a laser pulse train that hits various surfaces and obstacles in its way. By calculating the time it takes for the laser pulse to reflect back to its source, the cane provides real-time information about various stationary or moving obstacles directly in front of it.

A motorized, omnidirectional wheel attached to the tip of the cane is constantly in contact with the ground’s surface, which provides live feedback to the cane’s user.

Other sensors include GPS, accelerometers, magnetometers, and gyroscopes — the kind of hardware found in a smartphone — that monitor and track the cane’s geographic location, speed, and direction.

All of these sensors feed real-time information to an AI that controls robotic actuators in the cane to automatically steer the user towards an objective while navigating obstacles. For instance, the visually impaired user may set their destination to a convenience store or a local coffee shop. On the way there, the cane gently tugs and nudges, either left or right, so the user can move around obstacles.

The cane was tested in the field by both visually impaired and blindfolded sighted volunteers who had to use the augmented cane to navigate through hallways and traverse outdoor waypoints.

“We want the humans to be in control but provide them with the right level of gentle guidance to get them where they want to go as safely and efficiently as possible,” says Mykel Kochenderfer, an associate professor of aeronautics and astronautics and an expert in aircraft collision-avoidance systems.

Compared to the conventional white cane, the augmented cane allowed the volunteers with impaired vision to walk about 20 percent faster. Sighted volunteers with blindfolds walked nearly 35% faster than they did while using the white cane.

But although these results are impressive, they could be even better. The researchers caution that the augmented cane is still very much a work in progress and they’d like to run more safety tests and experiments before they are ready to commercially release it to the public.

The augmented cane was described in the journal Science Robotics.

share Share

Can AI help us reduce hiring bias? It's possible, but it needs healthy human values around it

AI may promise fairer hiring, but new research shows it only reduces bias when paired with the right human judgment and diversity safeguards.

Hidden for over a century, a preserved Tasmanian Tiger head "found in a bucket" may bring the lost species back from extinction

Researchers recover vital RNA from Tasmanian tiger, pushing de-extinction closer to reality.

Island Nation Tuvalu Set to Become the First Country Lost to Climate Change. More Than 80% of the Population Apply to Relocate to Australia Under World's First 'Climate Visa'

Tuvalu will likely become the first nation to vanish because of climate change.

Archaeologists Discover 6,000 Year Old "Victory Pits" That Featured Mass Graves, Severed Limbs, and Torture

Ancient times weren't peaceful by any means.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

A 5,000-Year-Old Cow Tooth Just Changed What We Know About Stonehenge

An ancient tooth reshapes what we know about the monument’s beginnings.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Rejoice! Walmart's Radioactive Shrimp Are Only a Little Radioactive

You could have a little radioactive shrimp as a treat. (Don't eat any more!)

Newly Found Stick Bug is Heavier Than Any Insect Ever Recorded in Australia

Bigger than a cockroach and lighter than a golf ball, a giant twig emerges from the misty mountains.

Chevy’s New Electric Truck Just Went 1,059 Miles on a Single Charge and Shattered the EV Range Record

No battery swaps, no software tweaks—yet the Silverado EV more than doubled its 493-mile range. How’s this possible?