homehome Home chatchat Notifications


Scientists grow human retinas in the lab and what they found changes our understanding of color vision

New research finds a simple vitamin A derivative is the key to our extraordinary color perception.

Tibi Puiu
January 16, 2024 @ 7:34 pm

share Share

Retinal organoid marked to show blue cones in cyan and green/red cones in green. Cells called rods that help the eye see in low-light or dark conditions are marked in magenta.
Retinal organoid marked to show blue cones in cyan and green/red cones in green. Cells called rods that help the eye see in low-light or dark conditions are marked in magenta. Credit: Sarah Hadyniak/ Johns Hopkins University.

Most mammals, like dogs, horses, and mice, rely predominantly on their sense of smell. Their eyes, often positioned on the sides of their heads, grant a wide field of vision but at the cost of precise depth perception and poor sight at a distance.

Predators generally have more forward-facing eyes, but unlike even these animals, humans, apes, and monkeys exhibit a peculiar trait: truly forward-facing eyes, with a large area of visual overlap, offering enhanced visual acuity. In fact, humans have some of the best vision in the animal kingdom, which may partly explain why we’re such a successful species.

A 2018 study that compared visual acuity for roughly 600 species of insects, birds, mammals, fish, and other animals found human vision to be an outlier.  Human eyesight is roughly 7 times sharper than a cat’s, 40 to 60 times sharper than a rat’s or a goldfish’s, and hundreds of times sharper than a fly or a mosquito’s vision.

That’s not all. Humans one up most other mammals in color vision too. The human eye can see millions of colors, a much wider color palette than dogs, for instance. According to a new study, this trait is owed to specialized eye cells whose development is directed by retinoic acid, a derivative of vitamin A. This finding contradicts the long-held belief that thyroid hormones control this process.

The Role of Vitamin A and Retinoic Acid in Human Color Vision

Old World monkeys and apes, including humans, have evolved trichromacy: the ability to perceive red, green, and blue colors. These independent color channels are derived from three distinct types of cone cells in the eyes. In contrast, dogs have only two color channels for blue and yellow, making them red-green color blind (but not entirely color blind; that’s a myth).

This trait arose from a gene duplication event, resulting in three distinct genes, each coding for a photoreceptor sensitive to different light wavelengths: blue (short wavelengths), green (medium wavelengths), and red (long wavelengths). The genetic code that instructs the retina to make these color-sensing cells was thought to be mediated by certain hormones produced in the thyroid. Not so, says Robert Johnston, an associate professor of biology at Johns Hopkins University.

A section of a human retina. Dotted lines depict an individual green cone in blue and a red cone in pink.
A section of a human retina. Dotted lines depict an individual green cone in blue and a red cone in pink. Credit: Sarah Hadyniak/ Johns Hopkins University.

Johnston and colleagues grew human retinas in a petri dish. They discovered that the levels of retinoic acid during early development are crucial for the development and differentiation of cone cells. High levels lead to a predominance of green cones, while lower levels result in more red cones.

“These retinal organoids allowed us for the first time to study this very human-specific trait,” Johnston said in a press release. “It’s a huge question about what makes us human, what makes us different.”

Additionally, the researchers mapped the red and green cone ratios in 700 adult human retinas, revealing surprising variations that do not affect visual acuity. In other words, people with normal vision will see colors slightly different from each other. If the same ratios were to apply to the cells that determine the length of a human arm, we’d see “amazingly different” arm lengths, Johnston said.

This research opens up new possibilities for understanding human vision, as well as color blindness, age-related vision loss, and other health conditions affecting vision.

“The future hope is to help people with these vision problems,” Johnston said. “It’s going to be a little while before that happens, but just knowing that we can make these different cell types is very, very promising.”

The findings appeared in the journal PLOS Biology.

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain