homehome Home chatchat Notifications


Scientists grow human retinas in the lab and what they found changes our understanding of color vision

New research finds a simple vitamin A derivative is the key to our extraordinary color perception.

Tibi Puiu
January 16, 2024 @ 7:34 pm

share Share

Retinal organoid marked to show blue cones in cyan and green/red cones in green. Cells called rods that help the eye see in low-light or dark conditions are marked in magenta.
Retinal organoid marked to show blue cones in cyan and green/red cones in green. Cells called rods that help the eye see in low-light or dark conditions are marked in magenta. Credit: Sarah Hadyniak/ Johns Hopkins University.

Most mammals, like dogs, horses, and mice, rely predominantly on their sense of smell. Their eyes, often positioned on the sides of their heads, grant a wide field of vision but at the cost of precise depth perception and poor sight at a distance.

Predators generally have more forward-facing eyes, but unlike even these animals, humans, apes, and monkeys exhibit a peculiar trait: truly forward-facing eyes, with a large area of visual overlap, offering enhanced visual acuity. In fact, humans have some of the best vision in the animal kingdom, which may partly explain why we’re such a successful species.

A 2018 study that compared visual acuity for roughly 600 species of insects, birds, mammals, fish, and other animals found human vision to be an outlier.  Human eyesight is roughly 7 times sharper than a cat’s, 40 to 60 times sharper than a rat’s or a goldfish’s, and hundreds of times sharper than a fly or a mosquito’s vision.

That’s not all. Humans one up most other mammals in color vision too. The human eye can see millions of colors, a much wider color palette than dogs, for instance. According to a new study, this trait is owed to specialized eye cells whose development is directed by retinoic acid, a derivative of vitamin A. This finding contradicts the long-held belief that thyroid hormones control this process.

The Role of Vitamin A and Retinoic Acid in Human Color Vision

Old World monkeys and apes, including humans, have evolved trichromacy: the ability to perceive red, green, and blue colors. These independent color channels are derived from three distinct types of cone cells in the eyes. In contrast, dogs have only two color channels for blue and yellow, making them red-green color blind (but not entirely color blind; that’s a myth).

This trait arose from a gene duplication event, resulting in three distinct genes, each coding for a photoreceptor sensitive to different light wavelengths: blue (short wavelengths), green (medium wavelengths), and red (long wavelengths). The genetic code that instructs the retina to make these color-sensing cells was thought to be mediated by certain hormones produced in the thyroid. Not so, says Robert Johnston, an associate professor of biology at Johns Hopkins University.

A section of a human retina. Dotted lines depict an individual green cone in blue and a red cone in pink.
A section of a human retina. Dotted lines depict an individual green cone in blue and a red cone in pink. Credit: Sarah Hadyniak/ Johns Hopkins University.

Johnston and colleagues grew human retinas in a petri dish. They discovered that the levels of retinoic acid during early development are crucial for the development and differentiation of cone cells. High levels lead to a predominance of green cones, while lower levels result in more red cones.

“These retinal organoids allowed us for the first time to study this very human-specific trait,” Johnston said in a press release. “It’s a huge question about what makes us human, what makes us different.”

Additionally, the researchers mapped the red and green cone ratios in 700 adult human retinas, revealing surprising variations that do not affect visual acuity. In other words, people with normal vision will see colors slightly different from each other. If the same ratios were to apply to the cells that determine the length of a human arm, we’d see “amazingly different” arm lengths, Johnston said.

This research opens up new possibilities for understanding human vision, as well as color blindness, age-related vision loss, and other health conditions affecting vision.

“The future hope is to help people with these vision problems,” Johnston said. “It’s going to be a little while before that happens, but just knowing that we can make these different cell types is very, very promising.”

The findings appeared in the journal PLOS Biology.

share Share

Coolness Isn’t About Looks or Money. It’s About These Six Things, According to Science

New global study reveals the six traits that define coolness around the world.

Ancient Roman Pompeii had way more erotic art than you'd think

Unfortunately, there are few images we can respectably share here.

Wild Orcas Are Offering Fish to Humans and Scientists Say They May Be Trying to Bond with Us

Scientists recorded 34 times orcas offered prey to humans over 20 years.

No Mercury, No Cyanide: This is the Safest and Greenest Way to Recover Gold from E-waste

A pool cleaner and a spongy polymer can turn used and discarded electronic items into a treasure trove of gold.

This $10 Hack Can Transform Old Smartphones Into a Tiny Data Center

The throwaway culture is harming our planet. One solution is repurposing billions of used smartphones.

Doctors Discover 48th Known Blood Group and Only One Person on Earth Has It

A genetic mystery leads to the discovery of a new blood group: “Gwada negative.”

More Than Half of Intersection Crashes Involve Left Turns. Is It Time To Finally Ban Them?

Even though research supports the change, most cities have been slow to ban left turns at even the most congested intersections.

A London Dentist Just Cracked a Geometric Code in Leonardo’s Vitruvian Man

A hidden triangle in the vitruvian man could finally explain one of da Vinci's greatest works.

The Story Behind This Female Pharaoh's Broken Statues Is Way Weirder Than We Thought

New study reveals the ancient Egyptian's odd way of retiring a pharaoh.

China Resurrected an Abandoned Soviet 'Sea Monster' That's Part Airplane, Part Hovercraft

The Soviet Union's wildest aircraft just got a second life in China.