homehome Home chatchat Notifications


Newly found molecule could cure pattern hair loss

Finally, a new treatment for hair loss that could actually work.

Tibi Puiu
June 27, 2023 @ 7:27 pm

share Share

Researchers at the University of California, Irvine (UCI), have identified a signaling molecule called SCUBE3 that may have the potential to cure a prevalent type of hair loss in both men and women.

The chemical compound instructs hair stem cells to start dividing, triggering new hair growth, researchers found after they injected the molecule into human hair follicles grafted onto the skin of mice.

pattern hair loss
Free public domain CC0 photo.

A signal for hair growth

SCUBE3 acts upon a population of cells in the skin known as dermal papilla (DP) cells. Researchers have known for decades that these cells play a critical role in regulating hair follicle development and growth. Their significance is compounded by the fact that they are also a reservoir of multi-potent stem cells, which can self-renew by dividing and developing into multiple specialized cell types present in various tissues and organs.

However, in people with androgenetic alopecia, also known as male-pattern baldness in men, DP cells can malfunction due to genetic factors. This condition affects up to 50% of males and is characterized by progressive loss of terminal hair of the scalp at any time after puberty.

It follows a characteristic distribution in both males and females. In males, hair loss is most prominent in the front of the scalp while women generally experience diffuse hair loss at the crown and top of the head.

Researchers at UCI suspected that activating chemicals must be involved in the proliferation of DP cells, so they bred very hairy mice with hyperactivated dermal papilla cells so any mechanisms involved in hair growth regulation would be more obvious. When looking closer, the previously unknown SCUBE3 signaling molecule popped up.

“At different times during the hair follicle life cycle, the very same dermal papilla cells can send signals that either keep follicles dormant or trigger new hair growth,” said Maksim Plikus, UCI professor of developmental & cell biology and the study’s corresponding author.

“We revealed that the SCUBE3 signaling molecule, which dermal papilla cells produce naturally, is the messenger used to ‘tell’ the neighboring hair stem cells to start dividing, which heralds the onset of new hair growth.”

To see how exactly how SCUBE3 promotes hair growth, the researchers injected SCUBE3 into mouse skin in which human scalp follicles had been previously transplanted. New hair shafts started growing from the bald patches made of dormant human follicles. The surrounding mouse follicles were also activated and started growing more hair than usual.

This suggests that SCUBE3 could be a fantastic therapeutic target for hair loss. At the moment, there are only two medications on the U.S. market approved by the FDA for androgenetic alopecia: finasteride and minoxidil. However, both drugs don’t work for all patients and have to be taken daily indefinitely for them to promote some hair growth.

“There is a strong need for new, effective hair loss medicines, and naturally occurring compounds that are normally used by the dermal papilla cells present ideal next-generation candidates for treatment,” Plikus said.

“Our test in the human hair transplant model validates the preclinical potential of SCUBE3.”

Researchers have filed for a patent on the use of SCUBE3 as a therapeutic agent for androgenetic alopecia and hope to start clinical trials on human subjects soon.

The findings appeared in the journal Developmental Cell.

share Share

Archaeologists May Have Found Odysseus’ Sanctuary on Ithaca

A new discovery ties myth to place, revealing centuries of cult worship and civic ritual.

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.