homehome Home chatchat Notifications


Ultra-thin night vision filter could make bulky goggles a thing of the past

New ultra-thin night vision filters could one day turn regular glasses into night-vision devices.

Tibi Puiu
June 10, 2024 @ 7:08 pm

share Share

night vision glasses
Illustration showing how this technology might look integrated into normal headwear to provide night-vision. Credit: TMOS.

Researchers have unveiled a revolutionary night vision technology that may transform everyday life, potentially making cumbersome and heavy night vision goggles a thing of the past. A new ultra-thin infrared filter, lighter than cling wrap, could be integrated into regular eyewear, allowing users to see both infrared and visible light simultaneously.

Night vision devices have traditionally been reserved for military use, hunting enthusiasts, or photographers due to their bulk and weight. The average person isn’t likely to go for a night-time jog with an extra kilo on their forehead.

Researchers at the ARC Centre of Excellence for Transformative Meta-Optical Systems, or TMOS, think bulky night vision could be a thing of the past. Soon, filters weighing less than a gram, integrated into regular glasses, could make night vision accessible for everyone. Imagine safer night-time driving, walking, and working without cumbersome headlamps.

From bulky goggles to night vision glasses

The technology leverages a special material called a lithium niobate metasurface to improve night vision. This material enhances infrared light and converts it into visible light through a process called non-linear upconversion. In simple terms, this means boosting the energy of light particles. Unlike traditional night vision systems that need many heavy, bulky parts and cooling systems, this new approach is much simpler. The light filter would be lightweight and work at room temperature, making it more practical for everyday use.

Traditional night vision involves infrared photons passing through lenses and encountering a photocathode to transform them into electrons. These electrons are then amplified and reconverted into photons, producing a visible image. Night vision is green because green is considered to provide the best balance between contrast and visibility in the dark. So, the amplified electrons land on a phosphor-coated screen. Still, this setup is cumbersome and blocks visible light.

Infrared (IR) to visible (VIS) up-conversion for vision applications. a) Schematic of the nonlinear up-converter for infrared imaging, where IR light passes through lens L1, is up-converted to visible light, and captured by lens L2 for a conventional camera. b) Ideally, the up-converter converts all rays equally, defined by H(k) = constant. c) In practice, rays at normal incidence are converted more efficiently than those at larger angles, i.e., H(klow) > H(khigh). Credit: Science Advances.

In contrast, the metasurface technology requires fewer parts. Photons pass through a single resonant metasurface where they mix with a pump beam. This metasurface enhances photon energy, converting low-frequency photons directly into the visible spectrum.

Not-so-impossible technology

The technology utilises lithium niobate, which is fully transparent in the visible range. It makes the process far more efficient by reducing angular data loss. In this context, angular data loss refers to the loss of visual information that occurs when light particles spread out at different angles. By reducing this loss, the technology ensures the conversion of more infrared light into clear, visible images, enhancing the overall quality and effectiveness of the night vision system.

 “People have said that high-efficiency up-conversion of infrared to visible is impossible because of the amount of information not collected due to the angular loss that is inherent in non-local metasurfaces. We overcome these limitations and experimentally demonstrate high-efficiency image up-conversion,” said lead author Laura Valencia Molina.

Co-author Rocio Camacho Morales highlights the practical applications, stating, “This is the first demonstration of high-resolution up-conversion from 1550 nm infrared to 550 nm visible light in a non-local metasurface. These wavelengths are crucial as 1550 nm is common in telecommunications and 550 nm is highly visible to the human eye.”

The researchers add that this technology may open new opportunities in biological imaging, autonomous navigation, and surveillance. “The miniaturization of night vision technology is a key example of the potential of meta-optics,” they added.

The findings appeared in the journal Advanced Materials.

share Share

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.