homehome Home chatchat Notifications


New study shows how extreme fish survive with antifreeze in their blood

These are extraordinary fishes.

Mihai Andrei
July 23, 2023 @ 1:17 am

share Share

With white blood that lacks hemoglobin, notothenioids have some of the most impressive adaptations out of any vertebrate. It gets even better. The group of fishes has an antifreeze protein that helps them survive in the sub-zero temperatures of  the Antarctic. Now, researchers have mapped out how they did it.

ice fish antarctica
Icefish (Chaenocephalus aceratus). Image credits: Doug Allan.

Notothenioids shouldn’t really exist. They live in the frigid waters below the Antarctic ice, isolated from the rest of the world by circular currents. They also spend their time in water that can reach -2°C — below the normal freezing point. They only manage to survive because they evolved antifreeze proteins in their blood.

But it gets even weirder: one group of notothenioids have basically lost their hemoglobin. Unsurprisingly called “icefish”, these are the only vertebrates we know of that don’t have any red blood cells.

“Survival in such a harsh environment requires additional compensations of the organism, and these fish have developed special proteins that act as antifreeze to stop them from freezing,” says Dr. Iliana Bista, one of the authors of a new study on icefish.

“These fish are the only vertebrates known to have completely lost their hemoglobins, and their blood looks white. This is remarkable because hemoglobins are needed to transport oxygen through the body; their loss in icefish is only possible because oxygen dissolves better in water at very low temperatures, and because of additional genomic and physiological adaptations.”

Bista is part of a team that sequenced the genome of 24 species of notothenioid fishes. With this new data, the researchers reconstructed the evolutionary and genetic history of these fish. They found, for instance, that the cold-resilient fishes split from the other lineages some 10.7 million years ago — more recent than expected. Also, some 5 million years ago, many new species started evolving and changing quickly.

ice fish antarctica
Notothenia gibberifrons. Image credits: Doug Allan.

The loss of hemoglobin did not come without consequences, the researchers explain. This must have been a shock that required numerous adaptations.

“A striking respiratory phenotype arose in the derived family Channichthyidae (“icefishes”), including the complete loss of functional hemoglobins in all of its species and the loss of cardiac myoglobin in six of them. While hemoglobin loss was not lethal in the oxygenated waters of the cold Southern Ocean, these losses were likely not without fitness consequences, as indicated by numerous compensatory cardiovascular adaptations, including enlarged hearts, and increased vascular bores,” the researchers note.

The genome of the ice-resistant fishes also extended quite drastically. This was enabled by a large increase in the number of transposons. Transposons are genomic elements that can introduce new functions and can copy themselves into new positions. It’s also when these genomic changes started happening that the fish started losing their hemoglobin.

Ultimately, this type of genetic analysis can help us understand how vertebrates can survive in such extreme environments, and how they are able to withstand such an extreme ecosystem. Without new genomic technology, work like this wouldn’t have been possible.

“Notothenioid fish live at the edge of viability. Sequencing a broad collection of their genomes gives insights into how they have evolved to survive there, and supports our understanding of a critical ecosystem. This study is a great example of how advances in genomics are revolutionizing our ability to understand biodiversity across the world,” says Professor Richard Durbin.

Ultimately, these fishes stand as a testament to the wonders of natural evolution and the adaptations that life is capable of. The evolutionary journey of the Notothenioids is a story of resilience and adaptation. But there’s still much we don’t know about them and still plenty of work left for future research.

share Share

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes