homehome Home chatchat Notifications


NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Mihai Andrei
January 26, 2024 @ 3:53 pm

share Share

NASA Superelastic tire
Image credits: NASA.

It’s hard to fix a flat tire on Mars or the Moon. In fact, it’s almost impossible. So, when NASA sends out a rover or any sort of wheeled explorer, it needs to make sure there are no accidents. This is where innovations like the Superelastic Tire can help.

The Superelastic Tire was developed by NASA for future Moon and Mars missions — but as the space agency points out, it’s a viable alternative to pneumatic tires here on Earth.

“The novel use of shape memory alloys capable of undergoing high strain as load-bearing components, instead of typical elastic materials, results in a tire that can withstand excessive deformation without permanent damage,” says NASA.

This is essentially a non-pneumatic tire that utilizes shape memory alloys, primarily Nickel-Titanium (NiTi) and its derivatives, as its main load-bearing components. The result is a tire that is capable of enduring way more strain than your average tire without it ever puncturing.

Using shape memory alloy as radial stiffening elements can also increase the load-carrying capacity of the tire. The Superelastic Tire offers traction equal or superior to conventional pneumatic tires and eliminates both the possibility of puncture failures and running “under-inflated”, thereby improving automobile fuel efficiency and safety. Also, this tire design does not require an inner frame which both simplifies and lightens the tire/wheel assembly.

Commonly used rubber tires are capable of withstanding strain in the order of 0.3-0.5% before yielding. This tire can withstand strains of up to 10% and then revert to the initial shape. Moreover, the tire uses shape memory alloys in the design — which essentially reverts to the initial shape after deformation. This feature provides greater flexibility in the tire’s design and can be tailored to specific needs.

So, you end up with a tire that doesn’t puncture and can withstand a lot of deformation. You can configure it for traction on various terrain, including extreme terrain, and you don’t even need air for it — nor do you need an inner frame. It’s not hard to see how this could be useful here on Earth as well. With that in mind, one company launched a Kickstarter to commercialize these tires. Yes, you can get these wheels for your car or even your bike. They don’t work for all brands, but a few can already incorporate them.

This isn’t the first time NASA has inspired a new generation of tires.

The Metl tire, another NASA innovation in tire technology, incorporates a unique component at its core: a spring reminiscent of a Slinky, encircling the entire tire. This spring is crafted from an innovative nickel-titanium alloy called NiTinol. NiTinol is remarkable for its combination of properties — it has strength like titanium and elasticity akin to rubber.

The Metl tire
The Metl tire uses a slinky to ensure that it returns to its initial shape even after strain. Image credits: The Smart Tire company.

NASA’s technological advancements have often found their way into our daily lives, leading to various inventions and improvements in a wide range of fields. One of the most well-known examples is memory foam, originally developed to enhance the safety of aircraft cushions. This material, known for its energy absorption and comfort, has since been widely adopted in mattresses, pillows, and even in medical equipment like prosthetics and wheelchairs. The scratch-resistant lenses commonly used in eyeglasses and sunglasses also owe their development to NASA. The agency’s need for astronaut helmet visors that were both durable and resistant to scratches led to the creation of a special coating.

The journey of NASA’s innovations from space exploration to Earthly applications highlights a crucial aspect of space research: it’s not just about conquering the final frontier, but also about the unexpected and transformative technologies that emerge along the way.

share Share

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.

British archaeologists find ancient coin horde "wrapped like a pasty"

Archaeologists discover 11th-century coin hoard, shedding light on a turbulent era.