homehome Home chatchat Notifications


Mysterious antimatter detected on ISS could be generated by cosmic "fireballs"

Antimatter detected on ISS could hint at unknown physics, new research finds.

Tibi Puiu
July 26, 2024 @ 6:54 pm

share Share

The Alpha Magnetic Spectrometer (AMS) experiment is installed on the International Space Station’s integrated truss structure. Credit: NASA.

In 2016, physicists were amazed when they detected antimatter versions of helium nuclei in an experiment aboard the International Space Station (ISS). But what really got them scratching their heads was the quantity of these antimatter particles. The numbers were much greater than the Standard Model of particle physics predicts.

In a new study, an international team of physicists has proposed hypothetical objects called fireballs to explain these striking observations.

The Mystery of Antihelium

Antimatter, the counterpart to matter, annihilates upon contact with matter. Every particle in the Universe has its corresponding antiparticle. For instance, the electron’s antiparticle is the antielectron, known as a positron. The electron and the antielectron have the same masses but opposite electric charges

Antimatter is closer to us than most people think. Small amounts of antimatter — at a rate ranging from less than one particle per square meter to more than 100 per square meter — constantly rain down on the Earth in the form of cosmic rays, energetic particles from space. Antimatter can be found closer still. The average banana (rich in potassium) produces a positron roughly once every 75 minutes. That’s because potassium-40 will occasionally eject a positron during the process of radioactive decay.

Theoretically, according to the Standard Model — the prevailing theory that describes subatomic particles — half the universe’s matter should have been antimatter. This implies that the universe should have destroyed itself soon after the Big Bang. However, antimatter remains elusive and scarce in the universe. This discrepancy is believed to have something to do with dark matter and dark energy.

Approximately eight years ago, the Alpha Magnetic Spectrometer (AMS-02) on the ISS detected around 10 antihelium nuclei. Creating antihelium-4, requires a specific and rare set of conditions involving multiple antiprotons and antineutrons. One antihelium-4 would be produced for every 10,000 antihelium-3, the current theory says. However, what the experiment actually measured was one antihelium-4 for every two to three antihelium-3 events — much beyond what the Standard Model predicts, so the data can’t be tossed away as a random statistical fluke.

Antihelium fireballs

The new study explores the possibility of these antihelium particles originating from so-called “fireballs.” These hypothetical objects could result from currently unobserved phenomena like the collision of dense clumps of dark matter. Dark matter is a mysterious substance that constitutes about 80% of the universe’s matter but does not interact with light.

According to Live Science, fireballs are described as dense, energetic regions of space filled with antiparticles. As these fireballs expand at nearly the speed of light, they release antiprotons, antineutrons, and antihelium into the surrounding environment. This hypothesis aligns well with the preliminary results detected aboard the ISS.

While these findings are promising, they remain preliminary and would require experimental validation. The AMS-02 is expected to complete its analysis of the candidate antihelium events, which may provide more clarity.

Additionally, the General AntiParticle Spectrometer (GAPS) project, set to launch a balloon over Antarctica to detect antimatter cosmic rays, including antihelium nuclei, could also clear things up.

As scientists continue to explore these findings, the potential for discovering unknown physics becomes increasingly intriguing.

The findings appeared in the journal Physical Review D.

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics