homehome Home chatchat Notifications


Astronomers image plasma flares on the bleeding edge of Milky Way's supermassive black hole

These flares should correspond to the point of no return for the Milky Way's supermassive black hole.

Tibi Puiu
October 31, 2018 @ 6:37 pm

share Share

Illustration of hot clumps of gas that orbit the black hole at the center of the Milky Way. Credit: ESO/Gravity Consortium/L. Calçada.

Illustration of hot clumps of gas that orbit the black hole at the center of the Milky Way. Credit: ESO/Gravity Consortium/L. Calçada.

Scientists have known for a long time that at the very heart of the Milky Way lies a supermassive black hole, about four million times more massive than the Sun. As its name suggests, we can’t image a black hole directly, but cutting-edge telescopes can tease out the infrared light emitted by interstellar gas as it swirls into the black hole. Now, an international team of researchers led by the Max Planck Institute for Extraterrestrial Physics reported evidence of knots of gas that appear to orbit the galactic center. This remarkable observation is the closest look yet at our galactic supermassive black hole and, at the same time, offers new opportunities to test the laws of physics.

The point of no return

To image things in the vicinity of Sagittarius A*, the Milky Way’s supermassive black hole, researchers looked to the GRAVITY project. Using a special technique called interferometry, four eight-meter-wide telescopes at the European Southern Observatory’s Very Large Telescope in Chile were combined to produce images that only a hypothetical telescope as large as entire countries could produce. By the same technique, in the future, a ‘planet-sized’ instrument called the Event Horizon Telescope hopes to produce an actual image of a black hole.

The new observations measured the brightness and position of infrared flares in the vicinity of Sagittarius A*. These flares actually trace a tiny circle in the night’s sky, the researchers found, moving clockwise.

Yepun telescope, part of the European Southern Observatory's (ESO's) Very Large Telescope. Credit: ESO.

Yepun telescope, part of the European Southern Observatory’s (ESO’s) Very Large Telescope. Credit: ESO.

These kinds of outbursts had been detected before. However, this was the first time that astronomers precisely measured the flares’ positions and motions before they dissipated. Each flare moved at about 30% light speed in a 45-minute orbit around what we can only suppose is a black hole.

Earlier this year, the same team measured the relativistic distortion of light from a star, S2, during its closest approach to Sagittarius A*.

These hot spots might be produced by shock waves in magnetic fields, much as solar flares erupt from the sun. Due to the immense gravitational forces present in the vicinity of the black hole, space-time itself is twisted into something resembling a lens, which causes these hot spots, circling at 30% the speed of light, to flash beacons of light across the cosmos. And by further studying these flares, researchers hope to tease out the black hole’s spin or rotation.

All of this, of course, assuming Einstein’s general theory of relativity is correct, which implies that the orbits of objects around a black hole are determined solely by the black hole’s mass and spin. If not, then the theory might need some refinement to accommodate for any observed inconsistencies.

Researchers reported their findings in the journal Astronomy & Astrophysics.

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.