homehome Home chatchat Notifications


Mars-sized planetary impact may have seeded ingredients for life on Earth

New insights into how life appeared on Earth -- but also possibly on other planets.

Tibi Puiu
January 24, 2019 @ 6:57 pm

share Share

Credit: Mr Edens.

All life on Earth — or that we know of in the whole Universe — is made up of six crucial ingredients: carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur (often abbreviated CHNOPS).

How and when life first emerged from a tangled chemical soup is still a mystery but researchers now say that all of these elementary chemical building blocks may have a thrilling origin. Billions of years ago, proto-Earth collided with another Mars-sized planet, which delivered the bulk of carbon and nitrogen required to seed life. The hypothetical planetary body, which some call Theia, is also believed to be responsible for the moon’s formation.

Studies on primitive meteorites, known as carbonaceous chondrites, suggest that Earth and the rest of the solar system’s rocky planets are volatile-depleted. The conventional explanation is that Earth grew without these volatile elements — such as carbon and nitrogen but also lead, zinc, copper, silver, bismuth, and tin — and they only got added at a later time by asteroidal-type bodies.

Planetary clash

Researchers at Rice University, however, argue that this explanation fails to capture the full picture since silicate Earth (non-core material) has 40 parts carbon to each part nitrogen — that’s twice the 20-1 ratio seen in primordial meteorites.

The team at Rice, coordinated by graduate student Damanveer Grewal, performed experiments in a test chamber that is specially equipped to simulate the high-pressure, high-temperature geochemical reactions that take place deep within the planet.

These experiments tested the idea that a sulfur-rich planetary core might exclude carbon and nitrogen, leaving a much larger fraction of these elements in the bulk silicate. Three scenarios were tested: no sulfur, 10% sulfur, and 25% sulfur.

Nitrogen was largely unaffected in these scenarios, remaining soluble in the resulting alloys relative to silicates. Only under very high sulfur concentrations did nitrogen start to exclude from the core. Carbon, in contrast, was less soluble in alloys. At the highest sulfur concentration in the core, there was up to 10 times less carbon in the sulfur-rich alloys than sulfur-free alloys.

Credit: Rajdeep Dasgupta

The researchers then designed a computer simulation that ran approximately one billion scenarios and compared them against the known primordial solar system conditions. The computer model suggested that Earth’s volatiles must have come from elsewhere.

“What we found is that all the evidence—isotopic signatures, the carbon-nitrogen ratio and the overall amounts of carbon, nitrogen and sulfur in the bulk silicate Earth—are consistent with a moon-forming impact involving a volatile-bearing, Mars-sized planet with a sulfur-rich core,” Grewal said in a statement.

All of this does not mean that meteorites haven’t made their fair contribution to life’s essential ingredients. Even in a scenario where early Earth was supposedly impacted by Theia, many meteorites would have continued to crash into the new Earth for millions of years.

What’s more, the new findings have implications not only for understanding how life began on Earth but also beyond the solar system.

“This study suggests that a rocky, Earth-like planet gets more chances to acquire life-essential elements if it forms and grows from giant impacts with planets that have sampled different building blocks, perhaps from different parts of a protoplanetary disk,”
study co-author Rajdeep Dasgupta said.

“This removes some boundary conditions,” he said. “It shows that life-essential volatiles can arrive at the surface layers of a planet, even if they were produced on planetary bodies that underwent core formation under very different conditions.”

The findings appeared in the journal Science Advances.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.