homehome Home chatchat Notifications


Iceland drilling project close to plugging into the Mid-Atlantic ridge

In a few months, Iceland will be drawing power directly from molten rock.

Alexandru Micu
October 24, 2016 @ 3:13 pm

share Share

A new geothermal drilling project in Iceland could produce ten times as much power as regular wells by tapping into the molten mantle of the planet.

Image credits IDDP.

While it may not look like it on the surface (especially now that fall is in full swing), the Earth is a very hot ball of space rock. Dig just a few kilometers under the surface, and you’ll hit temperatures high enough to make water boil. Dig deeper and at about 10 to 70 km (6 to 43 miles), depending on the kind of crust, you’ll find yourself in a place hot enough for rocks to stay molten all the time — the mantle. This is the stuff on which tectonic plates float on. This is where all the volcanoes in the world draw their lava from. And, ultimately, this is where all geothermal plants draw power from.

The hottest hole in the world

A new Icelandic project began on the 12th of August with the aim of supercharging geothermal energy production by drilling a 5 km (3.1 mile) deep hole in the Reykjanes area, southwest Iceland. This would bypass a thick layer of rocks (which aren’t very good thermal conductors) and allow engineers to draw power directly from magma systems that power the area’s lively subsurface volcanism. This may very well become the hottest hole in the world, with estimates placing temperatures anywhere between 400 and 1,000 degrees Celsius.

Called the Iceland Deep Drilling Project (IDDP), the goal is to drill all the way down to a landward extension of the Mid-Atlantic ridge — a major fissure between Earth’s tectonic plates — says Albert Albertsson, assistant director of HS Orka, an Icelandic geothermal energy company involved in the project. Here, magma heats water under the ocean’s floor. Pressures are incredibly high, around 200 atmospheres, which means that the researchers and companies behind the project will likely find the water as “supercritical steam”. It’s neither a liquid nor a gaseous state, sharing properties of both — but most importantly, it can store much more energy than either of those states.

“People have drilled into hard rock at this depth, but never before into a fluid system like this,” says Albertsson.

Albertsson said they’re expecting to find the land version of black smokers, underwater springs that run hot enough to dissolve metals such as gold or silver.

“If they can get supercritical steam in deep boreholes, that will make an order of magnitude difference to the amount of geothermal energy the wells can produce,” Arnar Guðmundsson from Invest in Iceland, a government agency that promotes energy development, told New Scientist.

The project’s idea of tapping sub-surface magma came back in 2009 when the IDDP (then drilling a conventional well) accidentally drilled into a molten rock reservoir about 2 km (1.25 miles). Just to see how much energy it could generate, the team poured water down the hole — and ended up producing 30 megawatts of power.

If this attempt is successful and proves to be more sustainable than the 2009 experiment, we could see a huge increase in geothermal energy output in areas with active volcanism, such as Japan or California. The drilling should be done by the end of the year, and in the following months, we’ll get to see just how much power it can churn out.

The project was short-lived, seeing as it was only ever set up as an experiment, but the team is hoping this new attempt will be more sustainable.

But before you get too excited, for now, this is all purely theoretical – we need to actually get the new well up and running first. The hole should be drilled by the end of the year, and in the months that follow, we’ll get an idea of how much electricity such a set-up can generate.

 

share Share

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.