homehome Home chatchat Notifications


How sperm cells defy Newton's third law of motion

The world of biology holds surprises, like cells that challenge the very fabric of Newtonian principles.)

Tibi Puiu
October 24, 2023 @ 10:25 pm

share Share

sperm
Credit: Public domain CC0 photo.

Picture a puny sperm cell, with its whip-like tail, wriggling its way through thick fluids to reach the prized egg. Out of millions of sperm, only one gets to chance to fertilize the egg. However, it’s astonishing any make it past the finish line given Newton’s third law of motion.

This is the law that famously states “for every action, there is an equal and opposite reaction.” It’s a principle you might recall from the days when two marbles collided and rebounded in your childhood games. Yet, when it comes to the microscopic world, things aren’t so straightforward.

Swimming against the current

Kenta Ishimoto, from Kyoto University, and his team delved deep into this puzzling behavior. They closely observed human sperm and the motion of green algae, Chlamydomonas, both of which swim using slender, flexible flagella (the tail).

Here’s the conundrum: the thick liquid environment around these cells should sap away all their energy, keeping them still. Imagine trying to swim in a pool of honey; that’s what these cells face in highly viscous fluids.

The way the sperm and green algae manage to ‘beat’ Newton’s third law of motion is owed to the ‘odd elasticity’ with which these flagella move. Their flagella interact with their surroundings in a non-reciprocal manner, bending in just the right way in response to the fluid. This means they don’t always receive an equal and opposite response.

This property allows the cells to glide effortlessly even through the thickest fluid without losing much energy. And since many microorganisms have flagella, there likely are many other tiny rule-breakers waiting to be discovered.

Beyond the thrill of learning more about nature, understanding these motions can improve the design of tiny robots or harness these principles to understand collective behavior in larger systems.

The findings appeared in the journal PRX Life.

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain