homehome Home chatchat Notifications


Heat-free metallic print can form electronic circuits on soft surfaces (flowers, gelatin)

Printing electronic circuits on a flower never looked so appealing.

Mihai Andrei
July 31, 2019 @ 8:08 pm

share Share

Martin Thuo of Iowa State University and the Ames Laboratory can show you several remarkable photos in his collection: a curled sheet of paper with a LED display or a rose with metal traces printed on a petal. This isn’t an artistic project — Thuo is working on a new technology which allows printing conductive metallic lines on all kinds of materials, from a wall to a leaf.

This could be a game changer.

Image credits: Martin Thuo.

The technology features liquid metal (alloys of bismuth, indium, and tin) and is remarkable for multiple reasons. For starters, it’s capable of producing extremely small particles, about 10 millionths of a meter across. The resulting print is also not hot, which means you can print it on anything you want — including living things.

The printed metal acts like a quickly-solidifying weld, creating conductive, metallic lines and traces which can be used for electronic circuits.

“This work reports heat-free, ambient fabrication of metallic conductive interconnects and traces on all types of substrates,” Thuo and colleagues write in a recent study.

Through the ‘printing’ process, the metal inside flows and solidifies, creating a heat-free weld or, in this case, printing conductive, metallic lines and traces on all kinds of materials — everything from a concrete wall to a leaf.

The technology could have numerous applications. It could be used to print sensors to measure the growth and state of crops (assessing whether everything is going smoothly, or if they require more water or are being attacked by pests). Similarly, the sensors could be used to monitor the structural integrity of a building. The technology has also been tested in this regard. The researchers used a paper-based setting as a base for the sensor, and the sensor read changes in electrical currents when the paper was curved. Researchers say that, ultimately, the approach could also be used for medical sensors or models for biological tissues (since it can also be printed on soft surfaces such as gelatin). All this is done without damaging the base, even when it’s a living biological system.

Printed electronic traces on gelatin. Image credits: Martin Thuo / Iowa State University.

Initially, this started as a teaching exercise. Thuo wanted to give his undergrad students something to work on that would be both useful and fun.

“I started this with undergraduate students,” he said. “I thought it would be fun to get students to make something like this. It’s a really beneficial teaching tool because you don’t need to solve 2 million equations to do sophisticated science.”

Now it’s grown spectacularly — the university has even sponsored Thuo’s lab with start-up funds to continue working on the technology.

“The students discovered ways of dealing with metal and that blossomed into a million ideas,” Thuo said. “And now we can’t stop.”

The study was published in the journal Advanced Functional Materials.

share Share

He Let Snakes Bite Him Over 200 Times and Now Scientists Want His Blood for an Universal Antivenom

A universal snakebite treatment may be within reach, thanks to an unlikely human experiment.

These companies want to make hand bags out of T-rex leather. But scientists aren't buying it

A lab-grown leather inspired by dinosaur skin sparks excitement—and scientific skepticism

This car-sized "millipede" was built like a tank — and had the face to go with it

A Carboniferous beast is showing its face.

9 Environmental Stories That Don't Get as Much Coverage as They Should

From whales to soil microbes, our planet’s living systems are fraying in silence.

Scientists Find CBD in a Common Brazilian Shrub That's Not Cannabis

This wild plant grows across South America and contains CBD.

Spruce Trees Are Like Real-Life Ents That Anticipate Solar Eclipse Hours in Advance and Sync Up

Trees sync their bioelectric signals like they're talking to each other.

The Haast's Eagle: The Largest Known Eagle Hunted Prey Fifteen Times Its Size

The extinct bird was so powerful it could kill a 400-pound animal with its talons.

Miracle surgery: Doctors remove a hard-to-reach spinal tumor through the eye of a patient

For the first time, a deadly spinal tumor has been removed via the eye socket route.

A Lawyer Put a Cartoon Dragon Watermark on Every Page of a Court Filing and The Judge Was Not Amused

A Michigan judge rebukes lawyer for filing documents with cartoon dragon watermark

This Bold New Theory Could Finally Unite Gravity and Quantum Physics

A bold new theory could bridge quantum physics and gravity at last.