homehome Home chatchat Notifications


Four-stroke internal combustion engine turned into a hydrogen reactor

A century-old machine has been turned into a 21st century hydrogen manufacturing device.

Tibi Puiu
February 20, 2017 @ 4:12 pm

share Share

Georgia Tech professor Andrei Fedorov (left) and undergraduate research assistant Yuzhe Peng with their lab-scale four-stroke hydrogen reactor. Credit: Candler Hobbs, Georgia Tech

Georgia Tech professor Andrei Fedorov (left) and undergraduate research assistant Yuzhe Peng with their lab-scale four-stroke hydrogen reactor. Credit: Candler Hobbs, Georgia Tech

Though highly valued as one of the fuels of the future at the beginning of the century, the hydrogen economy has proven unfeasible or, maybe, ahead of its time. Today, the vast majority of hydrogen is produced through a highly energy-intensive process called methane reforming. This is expensive and carbon-intensive which defeats the purpose of green, alternative fuel. But by using a century-old idea, researchers from the Georgia Institute of Technology may have come up with a novel and efficient means to generate hydrogen.

Making hydrogen like a well-oiled machine

What Andrei Fedorov, a Georgia Institute of Technology professor, and his colleagues did was to adapt a four-stroke internal combustion engine so it churns out hydrogen gas with every cycle. Combustion no longer takes place in the cylinder. Instead, methane is reacted in the presence of a catalyst during the ‘power stroke’ to form hydrogen gas and CO2 as a byproduct. The carbon molecules are adsorbed internally so it can then later be recycled or stored to prevent it from entering the atmosphere.

Fedorov claims this method can be scaled to any size and could be used by anyone from household consumers to big industry to generate hydrogen on-site. Basically, anywhere where there’s a natural gas link.

“We already have a nationwide natural gas distribution infrastructure, so it’s much better to produce hydrogen at the point of use rather than trying to distribute it,” Fedorov said. “Our technology could produce this fuel of choice wherever natural gas is available, which could resolve one of the major challenges with the hydrogen economy.”

The hydrogen reactor works almost exactly like a four-stroke internal combustion engine with some notable distinctions. Natural gas enters through a valve that open when the piston is lowered and closes when the piston rises. During a conventional power stroke, the vaporized liquid fuel is ignited by a spark plug if we’re talking about a gasoline-powered IC or by spontaneous combustion if this is diesel. In the case of the hydrogen four-stroke reactor, the power stroke raises the pressure of the natural gas causing it to reach 400 degrees Celsius. At this temperature, the gas reacts with water in the presence of a catalyst forming hydrogen and CO2.

Credit: Industrial & Engineering Chemistry Research.

The molecular H2 exits the reactor through a selective membrane while the pressurized CO2 is adsorbed by a sorbent material, mixed with the catalyst. Once H2 exits, the piston is lowered, reducing the pressure inside the cylinder so the CO2 is released from the sorbent material into the cylinder. The piston rises again for its final stroke to expel the CO2 and clear the reactor for a fresh new cycle.

This reactor, aptly named CO2/H2 Active Membrane Piston (CHAMP) reactor,  uses only two molecules of water for every molecule of methane to produce four hydrogen molecules, and operates at between 400 and 500 degrees Celsius. Conventional methane reforming needs three water molecules to make four hydrogen molecules and requires steam heated at 900 degrees Celsius.

CHAMP’s cylinder volume can be adjusted to virtually any scale to produce anywhere from a few kilograms of H2 to hundreds on a daily basis.

“All of the pieces of the puzzle have come together,” said Fedorov, a professor in Georgia Tech’s George W. Woodruff School of Mechanical Engineering. “The challenges ahead are primarily economic in nature. Our next step would be to build a pilot-scale CHAMP reactor.”

“We took the conventional chemical processing plant and created an analog using the magnificent machinery of the internal combustion engine,” Fedorov said. “The reactor is scalable and modular, so you could have one module or a hundred of modules depending on how much hydrogen you needed. The processes for reforming fuel, purifying hydrogen and capturing carbon dioxide emission are all combined into one compact system.”

The machine was described in the journal Industrial & Engineering Chemistry Research. 

share Share

New DNA Evidence Reveals What Actually Killed Napoleon’s Grand Army in 1812

Napoleon's army was the largest Europe had ever seen, but in just a few months it was obliterated.

Breathing This Common Air Pollution May Raise Your Dementia Risk by 17 Percent

Long-term exposure to common air pollutants like soot and traffic fumes may significantly raise your risk of dementia.

This mRNA HIV Vaccine Produces the Virus-Fighting Antibodies That Have Eluded Researchers for 40 Years

New mRNA-based HIV vaccines spark hope with potent immune responses in first human trial

Aging Might Travel Through Your Blood and This Protein Is Behind It

Researchers identify a molecular “messenger” that spreads cellular aging between organs.

Older Adults Keep Their Brains up to Two Years 'Younger' Thanks to This Cognitive Health Program

Structured programs showed greater cognitive gains, but even modest lifestyle changes helped.

Ancient Human Ancestors Showed Extreme Size Differences Between Males and Females

Early human ancestors may have lived in societies more combative than anything today.

Optimists Are All the Same; Pessimists Are All Different

Researchers found the brain activity of optimists looked strikingly similar to that of other optimists.

This Unbelievable Take on the Double Slit Experiment Just Proved Einstein Wrong Again

MIT experiment shows even minimal disturbance erases light’s wave pattern, proving Einstein wrong

Ohio Couple Welcomes World's “Oldest Baby” From 30-Year-Old Frozen Embryo

A record-breaking birth brings new questions about the limits of life in cold storage

The Longest Lightning Flash Ever Recorded Stretched 829 Kilometers From Texas to Missouri

A single flash stretched from Texas to Missouri.