homehome Home chatchat Notifications


There are more fish in the "twilight" zone near the Antarctic than we thought

The more researchers look in the oceans, the more they find them teeming with life.

Mihai Andrei
April 6, 2022 @ 6:42 pm

share Share

There’s plenty of fish in the sea… but how many, exactly? How do you go about counting the number of fish in the sea, especially in remote areas like the “twilight” zone (200-1000 meters below sea level) of the Southern Ocean, close to Antarctica? Obviously, going at it one by one is not an efficient approach. So instead, researchers try something else: echo sounding.

An echosounder sends out an acoustic pulse and when the pulse encounters something with different physical properties than the space around it, it is reflected back to the receiver. The fishes’ swim bladders, the gas-filled organs they use for buoyancy, are particularly sensitive to these pulses and offer very good reflectors.

But there’s a catch: a lot of times, in colder waters, fish lose the highly-reflective gas in their swim bladders. This means they produce a smaller acoustic signal, and their numbers could have been underestimated — this is what the authors of a new study are claiming.

X-rays of Southern Ocean lanternfish. The gas in the fish’s swimbladder makes it an excellent reflector of acoustic soundwaves. The top image shows a lanternfish species commonly found in more northerly sectors of the Southern Ocean – Protomyctophum bolini – with the highly reflective gas swim bladder clearly visible. The bottom x-ray is from a species more commonly found further south – Electrona antarctica. The lack of gas in the swim bladders of the southerly fish makes it a very weak reflector of the sound waves used in echosounding, despite it being roughly twice the size of the fish found further north. Image credits: Tracey Dornan

Judging by this difference, the researchers say, the biomass (total weight of the fish) in the areas close to the Antarctic could be 1.8-3.6 greater than previously expected. Lead author Dr. Tracey Dornan, a fisheries acoustician at British Antarctic Survey says:

“This research is hugely important as people have interpreted declines in acoustic survey signals towards Antarctica as a decrease in fish biomass—but this isn’t the case. We’ve shown that there is actually likely to be a peak in fish biomass towards the seasonal ice edge, but the typically larger fish that live here are relatively poor at scattering the acoustic signal back because they lack a gas-filled swimbladder, so their biomass has been underestimated.”

Map indicating highest regions of fish biomass. These biomass peaks are predicted to occur in colder polar waters, near the seasonal sea ice edge – important foraging grounds for predators including King penguins and seals. Image credits: British Antarctic Survey.

The research is particularly important for researchers studying fish in the Antarctic, especially those trying to assess their numbers. If we’re undercounting the total number of fish, it’s hard to have an accurate idea of how their numbers are changing. Fish play a vital role in the oceanic carbon cycle, and they’re also a key component of their ecosystems. These typically small fish (less than 20 cm or 8 inches) migrate vertically, feeding on plankton closer to the surface during the day, and returning to the depths during the night. So understanding variations in their population is essential not just for their own sake, but for the sake of the entire Antarctic ecosystem and its evolution.

Researchers caution that climate change (and warming waters) could produce more changes in how acoustic data reflects off fish, Co-author and ecologist Sophie Fielding, who supervised the project, concludes:

“This research highlights the importance of accounting for the unique scattering properties of individual species. This is particularly important in the face of climate change, as studies have predicted that acoustic signal is likely to increase. However, this could indicate a decrease in fish biomass as smaller, highly-reflective species move further south.”

Journal Reference: Large mesopelagic fish biomass in the Southern Ocean resolved by acoustic properties by Dornan, T., Fielding, S., Saunders, R.A., and Genner, M.J. is published in Proceedings of the Royal Society B. DOI: 10.1098/rspb.2021.1781

share Share

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

A New Type of Rock Is Forming — and It's Made of Our Trash

At a beach in England, soda tabs, zippers, and plastic waste are turning into rock before our eyes.

A LiDAR Robot Might Just Be the Future of Small-Scale Agriculture

Robots usually love big, open fields — but most farms are small and chaotic.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

50 years later, Vietnam’s environment still bears the scars of war – and signals a dark future for Gaza and Ukraine

When the Vietnam War finally ended on April 30, 1975, it left behind a landscape scarred with environmental damage. Vast stretches of coastal mangroves, once housing rich stocks of fish and birds, lay in ruins. Forests that had boasted hundreds of species were reduced to dried-out fragments, overgrown with invasive grasses. The term “ecocide” had […]

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

Small solar farms could deliver big ecological and energy benefits, researchers find.

Plants and Vegetables Can Breathe In Microplastics Through Their Leaves and It Is Already in the Food We Eat

Leaves absorb airborne microplastics, offering a new route into the food chain.

Explorers Find a Vintage Car Aboard a WWII Shipwreck—and No One Knows How It Got There

NOAA researchers—and the internet—are on the hunt to solve the mystery of how it got there.