homehome Home chatchat Notifications


Scientists Develop World's Fastest Microscope — It's So Fast It Can Capture Electrons Moving

The new microscope captures the fleeting motions of electrons with unprecedented precision, revealing the hidden dynamics of the subatomic world.

Tibi Puiu
August 22, 2024 @ 11:38 pm

share Share

illustration of atoms
Credit: Pixabay.

Physicists at the University of Arizona have achieved a significant breakthrough in imaging the subatomic world. They have developed the world’s fastest electron microscope, capable of capturing events that last just one attosecond — a quintillionth of a second.

These cutting-edge instruments are vital for studying ultrafast processes. An “attomicroscope” operates on a scale that dwarfs even the fastest cameras. Essentially, it freezes time to observe events at the particle level, including moving electrons. An attosecond is a staggeringly brief moment — there are as many attoseconds in a single second as there are seconds in 31.7 billion years.

Picking Up the Pace

Electron microscopes magnify objects by directing beams of electrons through a sample. But, traditionally, they are limited in how they capture movement. Camera lenses capture interaction between the electrons and the sample, and a camera sensor detects it in order to generate detailed images of the sample. 

While past innovations allowed scientists to observe electron behavior over time, they were still missing crucial details. It was the microscopic equivalent of seeing a movie in slow motion but with annoying missing frames in between.

Until now, the shortest event ever recorded was 43 attoseconds long, an achievement previously described as “the shortest controlled event ever created by humankind.” However, the University of Arizona team has now outdone this by achieving an unprecedented one-attosecond resolution. The faster the pulse, the better the image quality.

“When you get the latest version of a smartphone, it comes with a better camera,” said Associate Professor Mohammed Hassan. “This transmission electron microscope is like a very powerful camera in the latest version of smartphones; it allows us to take pictures of things we were not able to see before — like electrons. With this microscope, we hope the scientific community can understand the quantum physics behind how an electron behaves and how an electron moves.”

The research builds on the 2023 Nobel Prize-winning work of Pierre Agostini, Ferenc Krausz, and Anne L’Huillier, who pioneered the creation of ultrashort light pulses in the attosecond range. By refining these techniques and applying them to electron microscopy, the University of Arizona team has opened a new frontier in scientific imaging.

A Leap Forward in Microscopy

The attomicroscope
The ‘attomicroscope’ consists of two sections. The top produces an ultraviolet pulse releasing ultra-fast electrons inside the microscope. The bottom section uses another two lasers to gate, initiate and precisely control electron movement in the sample being studied. Credit: University of Arizona.

Their attosecond system involves a powerful laser split into two components: a fast electron pulse and two ultrashort light pulses. The first light pulse, called the pump pulse, energizes a sample, triggering electron movement or other rapid changes. The second pulse, known as the optical gating pulse, creates a brief window to generate a single attosecond electron pulse. The timing of this gating pulse determines the image resolution. By precisely synchronizing these pulses, researchers can control when the electron pulses probe the sample, allowing them to observe ultrafast atomic-level processes.

This advancement is poised to impact a wide array of fields, from physics and chemistry to materials science and bioengineering. By providing an unprecedented view into the behavior of electrons, the microscope could unlock new insights into quantum mechanics, the development of new materials, and even biological processes at the molecular level.

“The improvement of the temporal resolution inside of electron microscopes has been long anticipated and the focus of many research groups, because we all want to see the electron motion,” Hassan said. “These movements happen in attoseconds. But now, for the first time, we are able to attain attosecond temporal resolution with our electron transmission microscope — and we coined it ‘attomicroscopy.’ For the first time, we can see pieces of the electron in motion.”

The findings appeared in the journal Science Advances.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes