homehome Home chatchat Notifications


Cats in hats: The important reason scientists are dressing cats in these adorable wool caps

It's the first time we have a way to study chronic pain in cats.

Mihai Andrei
October 2, 2024 @ 12:16 am

share Share

These cute hats are helping scientists unlock the mysteries of pain with the help of advanced brain-monitoring technology — without the need for sedation or discomfort. In fact, the hats are playing an important role for feline research.

Cats’ brains are being scanned while they’re awake, using electrodes concealed under specially knitted wool caps. Credit: Alienor Delsart.

As you may imagine, assessing chronic pain conditions in cats is not the easiest thing in the world. Awake cats tend to shake off and chew the wired electrodes placed on their heads and rarely stand still long enough for testing.

Now, in a groundbreaking study published in the Journal of Neuroscience Methods, researchers have developed a non-invasive method to monitor brain activity in awake cats using electroencephalography (EEG) using knitted hats fitted with electrodes.

The study offers promising insights into how cats experience chronic pain, particularly those suffering from osteoarthritis, a condition that affects over 25% of adult cats. This is the first study to use surface electrodes to record EEG from conscious, awake cats.

Why it’s so important to study pain in cats

Cats are remarkably tough. They hide their pain and even when they’re going through major hardship. So, it can be hard for their owners to realize and recognize their discomfort. That’s why it’s so important to study pain in a clinical setting.

One cat wearing the ten electrodes and the specially knitted hat. The cat is lying on the bottom part of a cat carrier. Image credits: Delsart et al / 2024.

Previous EEG studies in felines required sedation or anesthesia, but those approaches can distort brain activity, especially when studying pain perception. They’re also disruptive and unpleasant for the cats. That’s why, in the new study, researchers led by Éric Troncy and Aude Castel of Montreal University developed a new technique to keep the electrodes in place: by placing them in knitted beanies.

They tested the method on 11 cats with osteoarthritis.

The research team placed ten gold-plated electrodes on the cats’ heads and measured their brain responses to a variety of stimuli, including mechanical touch, grapefruit scent, and different wavelengths of light (blue, green, and red). The EEG readings revealed distinct brain activity patterns, known as event-related potentials (ERPs), which signal how the brain processes sensory information. Importantly, this technique was well-tolerated by the cats, and none of the animals required sedation.

Better treatment

Researchers first assessed stress and pain in cats by using stimuli passed through the electrodes. Afterwards, they tested out how some stimuli could reduce pain.

Interestingly, exposure to different types of light — especially blue light — resulted in significant changes in brainwave patterns. These findings echo previous studies in humans and rodents, where exposure to specific wavelengths of light has been shown to alter pain perception.

One particularly novel aspect of the study was the examination of olfactory responses. Cats were exposed to grapefruit scent, which is known to elicit an aversive reaction in felines. The EEG captured how the cats’ brains reacted to the smell, providing a unique window into how unpleasant odors might influence their experience of pain.

The goal is to create better treatment options and improve quality of life. Currently, treatment options for feline osteoarthritis are limited, with most relying on non-steroidal anti-inflammatory drugs, which can have significant side effects.

The study’s lead author, Dr. Aude Castel, explained that this research opens the door to new ways of managing feline pain, potentially using sensory modulation — such as light therapy or odor interventions — to alleviate discomfort.

“We now plan to obtain funding, in partnership with private companies, to enable us to establish a genuine EEG signature for chronic pain, and many other applications that will enable us to automate chronic pain detection in the future,” said Troncy.

Journal Reference: Aliénor Delsart et al, Non-invasive electroencephalography in awake cats: Feasibility and application to sensory processing in chronic pain, Journal of Neuroscience Methods (2024). DOI: 10.1016/j.jneumeth.2024.110254

share Share

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.