homehome Home chatchat Notifications


Breakthrough could double energy density of lithium-ion batteries

A new polymer incorporated into Li-ion batteries could dramatically improve their performance.

Tibi Puiu
March 13, 2019 @ 5:57 pm

share Share

Credit: Pixabay.

Credit: Pixabay.

Lithium-ion batteries power everything from cell phones to electric vehicles. Naturally, consumers want devices that last for longer and longer, but increasing energy density has proven challenging due to engineering roadblocks. Every once in a while though, there are breakthroughs — like the recent research at Penn State that might not only double the energy density of lithium-ion batteries but also make them safer and extend their lifespan.

Cleaner electrodes

Li-ion batteries are enabled by a protecting layer on the negative electrode, which self-forms as a result of electrolyte decomposition, a process called solid electrolyte interphase (SEI). This so-called passivation layer is important because it offers just enough electronic resistance to limit electrolyte decomposition. However, through repeated use, this layer’s growth leads to capacity fade and increased cell resistance.

Over time, needle-like dendrites grow on the lithium electrode, inhibiting performance and safety.

“This is why lithium metal batteries don’t last longer—the interphase grows and it’s not stable,” Donghai Wang, Professor of Mechanical and Chemical Engineering at Penn State, said in a statement. “In this project, we used a polymer composite to create a much better SEI.”

A reactive polymer composite, picturing the electrochemical interface between lithium metal anode and electrolyte is stabilized by the use of a reactive polymer composite. Credit: DONGHAI WANG.

A reactive polymer composite, picturing the electrochemical interface between lithium metal anode and electrolyte is stabilized by the use of a reactive polymer composite. Credit: DONGHAI WANG.

To bypass this roadblock, the engineers devised a new SEI — a reactive polymer composite made up of polymeric lithium salt, lithium fluoride nanoparticles, and graphene oxide sheets. Many thin layers of this polymer react to make a claw-like bond to the lithium metal surface so that it doesn’t react with the electrolyte molecules. This was achieved by controlling the surface of the lithium at the level of individual atoms and molecules.

The reactive polymer also decreases the weight and manufacturing cost, further enhancing the future of lithium metal batteries.

“With a more stable SEI, it’s possible to double the energy density of current batteries, while making them last longer and be safer,” Wang said.

The research was published in the journal Nature Materials.

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain