homehome Home chatchat Notifications


New method developed to encode huge quantity of data in diamonds

Data is a girl's best friend.

Alexandru Micu
October 28, 2016 @ 5:39 pm

share Share

A team from the City College of New York have developed a method to store data in diamonds by using microscopic defects in their crystal lattice.

Image credits George Hodan / Publicdomainpictures

Image credits George Hodan / Publicdomainpictures

I’ve grown up on sci-fi where advanced civilizations stored immense amounts of data in crystals (like Stargate SG-1. You’re welcome). Now a U.S. team could bring the technology to reality, as they report exploiting structural defects in diamonds to store information.

“We are the first group to demonstrate the possibility of using diamond as a platform for the superdense memory storage,” said study lead author Siddharth Dhomkar.

It works similarly to how CDs or DVDs encode data. Diamonds are made up of a cubic lattice of carbon atoms, but sometimes an atom just isn’t there. So the structure is left with a hole — a structural defect. They’re also referred to as nitrogen vacancy centers as nitrogen atoms align themselves to the defects.

These vacancies are negatively charged (as there are no protons to offset the electrons’ charge from neighboring atoms). But, the team found that by shining a laser on the defects — in essence neutralizing their electrical charge — they could alter how each vacancy behaved. Vacancies with a negative charge fluoresced brightly, while those with neutral charges stayed dark. The change is reversible, long-lasting, and stable under weak and medium levels of illumination, the team said.

So just as a laser can be used to encode data on a CD’s medium, it can be turned to storing data by changing these defects’ charges. In theory, this method could allow scientists to write, read, erase, and re-write the diamonds, the team added.

Dhomkar said that in principle, each bit of data can be encoded in a spot a few nanometers — a few billionths of a meter — wide. This is a much denser information packing than in any similar data storing device. So we could use diamonds to build the superdense computer memories of the future. But, we currently have no way to read or write on such a small scale so currently “the smallest bit size that we have achieved is comparable to a state-of-the-art DVD,” Dhomkar told Live Science.

Here “but nr.2” comes into the picture. We can’t yet fully use the diamonds’ capacity, but the team has shown they can encode data in 3D by stacking layers of 2D data stores.

“One can enhance storage capacity dramatically by utilizing the third dimension,” Dhomkar said.

By using this 3D approach, the technique could be used to store up to 100 times more data than a typical DVD. Dhomkar and his team are now looking into developing ways to read and write the diamond stores with greater density.

“The storage density of such an optimized diamond chip would then be far greater than a conventional hard disk drive,” he said.

The full paper “Long-term data storage in diamond” has been published in the journal Science Advances.

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.