homehome Home chatchat Notifications


Coldest chemical reaction reveals intermediate molecules in slow motion

Scientists have used a complex setup that allowed them to image intermediate chemical compounds that typically last only a thousandth a billionth of a second.

Tibi Puiu
December 3, 2019 @ 10:30 pm

share Share

When you chill things close to absolute zero, everything slows down to the point that even the vibration of atoms can come to a grinding halt. This is what researchers at Harvard achieved during an experiment in which they’ve generated the slowest chemical reaction yet. This allowed them to buy enough time to image intermediate chemical compounds that would have otherwise assembled into something else too fast for even our most advanced instruments to follow.

The coldest bonds in the history of molecular chemistry

A diagram showing the transformation of potassium-rubidium molecules (left) into potassium and rubidium molecules (right). Normally the intermediate (middle) step occurs too fast to see but new tech demonstrated by Harvard researchers managed to capture it for the first time. Credit: Ming-Guang Hu.

Absolute zero — the coldest possible temperature — is set at -273.15 °C or -459.67 °F. In experiments closer to room temperature, chemical reactions tend to slow down as the temperature decreases. As you cross into the ultra-cold realm, you’d expect no chemistry at all to happen — but that’s just not true.

Researchers at Harvard University chilled a gas made of potassium and rubidium atoms to just 500 nanoKelvin. For reference, this is millions of times colder than interstellar space.

Even at such frigid temperature, atoms and molecules still react — and they do so slowly enough for scientists to see everything. When the potassium and rubidium molecules interacted, researchers were able to image for the first time the four-atom molecule that was created in an intermediate step.

At room temperature, chemical reactions occur in just a thousandth of a billionth of a second. Previously, scientists used ultrafast lasers like fast-action cameras to snap images of the reactions as they occur. However, because the reaction time is so fast, this method cannot image the many intermediate steps involved in a typical chemical reaction.

“Most of the time,” said Ming-Guang Hu, a post-doc researcher at the department of chemistry and chemical biology at Harvard University and first author of the new study. “you just see that the reactants disappear and the products appear in a time that you can measure. There was no direct measurement of what actually happened in the middle.” 

In the future, scientists will be able to use a similar method to study other chemical reactions in minute detail. Observations aside, such a technique may also enable researchers to tamper with chemical reactions in a more controlled manner, with potential applications in the pharmaceutical, energy, and household product industries.

The findings were reported in the journal Science.

share Share

Coolness Isn’t About Looks or Money. It’s About These Six Things, According to Science

New global study reveals the six traits that define coolness around the world.

Ancient Roman Pompeii had way more erotic art than you'd think

Unfortunately, there are few images we can respectably share here.

Wild Orcas Are Offering Fish to Humans and Scientists Say They May Be Trying to Bond with Us

Scientists recorded 34 times orcas offered prey to humans over 20 years.

No Mercury, No Cyanide: This is the Safest and Greenest Way to Recover Gold from E-waste

A pool cleaner and a spongy polymer can turn used and discarded electronic items into a treasure trove of gold.

This $10 Hack Can Transform Old Smartphones Into a Tiny Data Center

The throwaway culture is harming our planet. One solution is repurposing billions of used smartphones.

Doctors Discover 48th Known Blood Group and Only One Person on Earth Has It

A genetic mystery leads to the discovery of a new blood group: “Gwada negative.”

More Than Half of Intersection Crashes Involve Left Turns. Is It Time To Finally Ban Them?

Even though research supports the change, most cities have been slow to ban left turns at even the most congested intersections.

A London Dentist Just Cracked a Geometric Code in Leonardo’s Vitruvian Man

A hidden triangle in the vitruvian man could finally explain one of da Vinci's greatest works.

The Story Behind This Female Pharaoh's Broken Statues Is Way Weirder Than We Thought

New study reveals the ancient Egyptian's odd way of retiring a pharaoh.

China Resurrected an Abandoned Soviet 'Sea Monster' That's Part Airplane, Part Hovercraft

The Soviet Union's wildest aircraft just got a second life in China.