homehome Home chatchat Notifications


Scientists build chemical weapon detector with Lego

Gruesome chemical weapons can be detected with the help of children's toys.

Tibi Puiu
June 27, 2018 @ 3:00 pm

share Share

War is no child’s play, but that didn’t stop researchers at the University of Texas at Austin from being creative. They used LEGO bricks — popular children’s toys — and a smartphone to develop an optical sensing method for detecting nerve agents.

Scientists designed a nerve agent detector using LEGO bricks and a smartphone. Credit: American Chemical Society.

Scientists designed a nerve agent detector using LEGO bricks and a smartphone. Credit: American Chemical Society.

Chemical weapons are arguably the most gruesome kinds of weapons man has devised. They work by shutting down enzymes that control the body’s nervous system functions, inhibiting respiratory and cardiovascular capability. Death follows within minutes from contact with the chemical agent — which is either inhaled or absorbed through the skin.

The use and possession of chemical weapons are prohibited under international law. However, several nations continue to maintain active chemical weapons programs, despite a prevailing norm against the use of chemical weapons and international efforts to destroy existing stockpiles. Recent events in Syria suggest that chemical weapons have been deployed there, for instance. Then, there’s the threat of terrorist attacks.

Besides their potential for causing horrific mass murder, chemical weapons are also extremely easy to conceal. Generally, the compounds are odorless, tasteless, and highly difficult to detect because of their low lethal doses. Even a fraction of a milligram of some chemical agents is enough to kill a person.

Current methods for detecting nerve agents involve bulky and expensive equipment that isn’t suited for the field. To complicate matters further, there are two main classes of such lethal chemicals, each with its particularities, making it challenging to differentiate between them.

The two main types of nerve agents are G-series and V-series. G-series are phosphoryl fluorides, such as sarin (GB), soman (GD), and tabun (GF) gas, while V-series are phosphoryl thiols, such as O-ethyl-S-(2-diisopropylaminoethyl), methylphos-phonothioate (VX), O-isobutyl-S-2-diethyl-aminoethylmethyl-phosphonothioate(RVX), and O-butyl-S-2-diethyl-aminoethyl methylphosphonothioate (CVX). V-agents are more toxic and of lower volatility than G-agents, making them far more dangerous.

Researchers at the University of Texas at Austin not only found an efficient way to detect and differentiate between various nerve agents, they did so using cheap and readily available materials. The method doesn’t involve any direct chemical analysis, instead relying on image analysis.

“Traditionally, to record and interpret the optical changes, spectroscopy measurements such as fluorescence spectroscopy, ultraviolet−visible absorption spectroscopy, X-ray photoelectron spectroscopy, circularly dichroism spectropolarimetry, etc., utilizing sophisticated instruments are required,” the authors wrote in their new study published in ACS Central Science. 

The team developed a cascade of reactions that amplify an optical signal resulting from a byproduct of the decomposition of the nerve agents. The mixture changes color and intensity of emissions relative to the amount of chemical weapon agent. It’s then only a matter of recording this visual change of emissions  — which can be read with a smartphone’s camera, placed within a LEGO box. The only other components in the chemical weapon detector are a UV/visible lamp and a 96-well test plate.

The resulting image is analyzed by free-software and to encourage others to adopt and improve their technology, the researchers uploaded all of their work (code, image guides, and a demo video) to GitHub.

“We show that the two different amplification routines are selective for their analyte class and thus successfully discriminated the G- and V-series nerve agent mimics. Further, accurate concentrations of the analytes are determined using the chromaticity and LEGO
approach given herein, thus demonstrating a simple and on-site constructible/portable device for use in the field,” the authors concluded.

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics