homehome Home chatchat Notifications


Scientists find completely new type of atomic bond

Researchers have observed something which had been proposed for a long time.

Mihai Andrei
November 10, 2016 @ 3:17 am

share Share

Researchers have observed something which had been proposed for a long time: butterfly Rydberg molecules.

“This new binding mechanism, in which an electron can grab and trap an atom, is really new from the point of view of chemistry,” explained lead researcher Chris Greene. “It’s a whole new way an atom can be bound by another atom.”

Confirming a 14-year-old prediction, Purdue researchers have described a completely new type of atomic bond.

The atom can be a strange thing to describe, but for the sake of simplicity, let’s imagine it as a proton and neutron core surrounded by an electron cloud. In Rydberg molecules, the electron is kicked far far away from the nucleus, but still orbits it. In 2002, a team of researchers from Purdue University in Indiana predicted that a Rydberg molecule could attract and bind to another atom — something which at the time was thought to be impossible. Now, they’ve proven this theory.

“For all normal atoms, the electrons are always just one or two angstroms away from the nucleus, but in these Rydberg atoms you can get them 100 or 1,000 times farther away,” Greene said. “Following preliminary work in the late 1980s and early 1990s, we saw in 2002 the possibility that this distant Rydberg electron could bind the atom to another atom at a very large distance. This electron is like a sheepdog. Every time it whizzes past another atom, this Rydberg atom adds a little attraction and nudges it toward one spot until it captures and binds the two atoms together.”

While this is exciting in itself, the implications for chemical studies are hard to fathom at this point. Basically, it’s an entirely new way through which two or more atoms can be bound together and this can open a world of possibilities. However, this transformation requires special conditions. In order for this to happen, Greene and the rest of his team had to cool Rubidium gas almost to absolute zero, the absolute lowest temperature in the universe. After that, they pushed the electron far from its nucleus using a laser, and then they observed it.

“Whenever another atom happens to be at about the right distance, you can adjust the laser frequency to capture that group of atoms that are at a very clear internuclear separation that is predicted by our theoretical treatment,” Greene said.

It’s also very satisfying and encouraging to validate the entire theoretical process. There’s something exhilarating in predicting something theoretically, and then observing it in practice.

“It’s a really clear demonstration that this class of molecules exist,” Greene said. “It also validates the whole theoretical approach that we and a few other groups have taken that led to the prediction and study of this new class of molecules.

Tests continue to see what kind of molecules can be created through this process and what the potential applications are.

The research has been published in the journal Nature Communications.

share Share

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

A New Type of Rock Is Forming — and It's Made of Our Trash

At a beach in England, soda tabs, zippers, and plastic waste are turning into rock before our eyes.

A LiDAR Robot Might Just Be the Future of Small-Scale Agriculture

Robots usually love big, open fields — but most farms are small and chaotic.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

50 years later, Vietnam’s environment still bears the scars of war – and signals a dark future for Gaza and Ukraine

When the Vietnam War finally ended on April 30, 1975, it left behind a landscape scarred with environmental damage. Vast stretches of coastal mangroves, once housing rich stocks of fish and birds, lay in ruins. Forests that had boasted hundreds of species were reduced to dried-out fragments, overgrown with invasive grasses. The term “ecocide” had […]

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

Small solar farms could deliver big ecological and energy benefits, researchers find.

Plants and Vegetables Can Breathe In Microplastics Through Their Leaves and It Is Already in the Food We Eat

Leaves absorb airborne microplastics, offering a new route into the food chain.

Explorers Find a Vintage Car Aboard a WWII Shipwreck—and No One Knows How It Got There

NOAA researchers—and the internet—are on the hunt to solve the mystery of how it got there.