homehome Home chatchat Notifications


Scientists learn how bone grows atom by atom, which could lead to better osteoporosis treatment

Bone growth had previously been somewhat of a mystery.

Tibi Puiu
November 21, 2018 @ 2:44 am

share Share

Swedish researchers were looking to create artificial bone, but in doing so they may have come across something more important. By analyzing the process of their bone imitation, the researchers were able to study how our bones grow at an atomic level, morphing from an unstructured mass into a perfectly arranged structure.

n: Strings of a polymerised liquid crystal act as the strings of collagen in the body. The amorphous calcium phosphate (in grey) enters the strings and begins to crystallise, creating the artificial bone-like material. ​ ​Illustration: Anand Kumar Rajasekharan/Chalmers University of Technology.

Strings of a polymerized liquid crystal act as the strings of collagen in the body. The amorphous calcium phosphate (in grey) enters the strings and begins to crystallize, creating the artificial bone-like material. Illustration: Anand Kumar Rajasekharan/Chalmers University of Technology.

It’s a well-established fact that our bones grow in stages, but what exactly goes on in each of these stages had previously been a mystery. Martin Andersson, Professor in Materials Chemistry at Chalmers University of Technology, Sweden, along with colleagues, developed a method for creating artificial bone using 3-D printing. Once this technology is fully developed, the team hopes to create nature-mimicking implants that might replace metal and plastic implants currently in use.

However, while Andersson and colleagues were printing bones, they couldn’t help but notice that their process was extremely similar to the environment that living tissue grows in. Using electron microscopes, the team studied how material turned from an amorphous mush into an orderly structure that resembles bone, all at the atomic level.

“A wonderful thing with this project is that it demonstrates how applied and fundamental research go hand in hand. Our project was originally focused on the creation of an artificial biomaterial, but the material turned out to be a great tool to study bone building processes. We first imitated nature, by creating an artificial copy. Then, we used that copy to go back and study nature,” Andersson said in a statement.

Diagram describing a possible bone mineralisation mechanism. Credit: Nature Communications.

Diagram describing a possible bone mineralisation mechanism. Credit: Nature Communications.

Writing in the journal Nature Communicationsthe Swedish researchers explain how bone mineralization first starts with strings of the protein collagen — the smallest structural building block in the skeleton. Cells then send spherical particles called vesicles to the site, where they bind between the collagen strings. There, the vesicles, which are made of calcium phosphate, transform from an amorphous mass into an ordered crystalline structure.

The crystallization process is not biological but rather purely physical, following the laws of thermodynamics. The calcium phosphate molecules are drawn to where the energy level is the lowest, and therefore where there is a more stable state.

These findings could prove highly useful, not only in manufacturing nature-mimicking bones for implants but also for treating bone diseases.

“Our results could be significant for the treatment of bone disease such as osteoporosis, which today is a common illness, especially among older women. Osteoporosis is when there is an imbalance between how fast bones break down and are being reformed, which are natural processes in the body,” said Martin Andersson.

Drugs that seek to address this imbalance may be improved thanks to this study’s newfound knowledge, the authors conclude.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.