homehome Home chatchat Notifications


This implantable battery powers itself exclusively with the body's own oxygen

The output is still very low, but for the first time we have something than can harness oxygen to power medical devices indefinitely.

Rupendra Brahambhatt
March 27, 2024 @ 8:14 pm

share Share

An illustration of the oxygen-powered battery.
An illustration of the oxygen-powered battery. Image credits: Chem/Lv et al.

Oxygen is the fuel for much of life on Earth. But did you know that same oxygen in our bodies could one day power batteries in medical implants? A new study has revealed a novel sodium-oxygen (Na-O2) battery that does just this.

A problem with medical implants is that doctors have to perform invasive surgeries to replace their batteries from time to time. This newly proposed Na-O2 battery, however, would run on our oxygen — it would recharge itself.

“We propose a novel Na-O2 battery design for in vivo applications that utilizes a stable sodium-based alloy as the anode and oxygen from body fluids as the cathode component. This battery demonstrates promising potential as an energy source for powering micro-implantable electronics,” the study authors note.

How an oxygen-driven battery works

If there is one substance that is abundant in mammal bodies, it is oxygen. Oxygen is constantly being replaced via respiration and is key to many energy-centered biological processes. So, how could we use this very bioavailable molecule in a battery? The researchers at Tianjin University of Technology were trying to find the answer to this question.

“If we can leverage the continuous supply of oxygen in the body, battery life won’t be limited by the finite materials within conventional batteries,” Xizheng Liu, one of the study authors and a professor of energy materials and devices at Tianjin University, said.

They wanted to develop a safe, feasible, and efficient oxygen-powered battery, and the only way to do this was to use components and chemicals compatible with living systems. 

With this in mind, they used a sodium-based alloy as the anode. Sodium is already integral to the human diet and body, playing a key role in maintaining nerves, body fluids, and muscles. All these factors make it an ideal biocompatible anode.

As the separator, the researchers employed nanoporous gold (NPG), a material that has pores a thousand times smaller than the width of a human hair. NPG is already used in many biological applications because of its biocompatibility and high stability.

After creating their novel battery, they encased this arrangement in a soft polymer. They then surgically implanted it under the skin in rats, which served as model animals for the experiment. 

“After 24 hours of implantation, an unstable discharge voltage plateau was observed at 1 and 2 μA/cm2 indicating that only a small amount of succus or blood entered the cathode compartment and enabled a continuous O2 supply,” the study authors note.

“By further extending the implantation for 2 weeks, stable voltage plateaus of approximately 1.4 and 1.3 V were obtained at 1 and 2 mA/cm2, respectively, with a maximum power density of 2.6 μW/cm2.  Similarly, after 4 weeks of implantation, the discharge voltage plateaus remained at approximately 1.3 and 1.2 V at 1 and 2 μA/cm2, respectively, indicating a steady and continuous O2 supply from the body fluids.”

For the first time, the researchers proved that internal oxygen could provide stable energy input to batteries. However, the output achieved during the study won’t be enough to power any medical implant. For instance, a pacemaker runs on a battery capable of generating 2 to 5 volts of output.

Therefore, further research is required to improve the Na-O2 battery performance, according to the study authors.

Showing great potential

When it comes to safety, the Na-O2 battery might be one of the most secure power solutions for medical devices. During the study, it didn’t cause any side effects in the model animals, and none of the byproducts it released were harmful to human health.

“The Na+ and OH ions produced during the discharge process enter the blood without causing electrolyte disturbance. The metabolism of substances in the body did not result in any abnormalities in the liver and kidney. The excellent bio-compatibility of the battery indicates immense potential for practical applications and has the potential to revolutionize the field of implantable batteries,” the researchers said.

The researchers also noticed that the blood vessels that suffered damage when they implanted the battery regenerated after some time around the implant. This surprising development hints that the Na-O2 battery can also be used for monitoring wound healing, according to Liu.

“While several fundamental studies and intrinsic challenges remain to be tackled, the Na-O2 battery is still highly promising and can spark a new revolution in the field of implantable devices, leading to the development of new methods for the treatment of various diseases.” 

The study is published in the journal Chem.

share Share

Can AI help us reduce hiring bias? It's possible, but it needs healthy human values around it

AI may promise fairer hiring, but new research shows it only reduces bias when paired with the right human judgment and diversity safeguards.

Does a short nap actually boost your brain? Here's what the science says

We’ve all faced the feeling at some point. When the afternoon slump hits, your focus drifts and your eyelids start to drop; it’s tiring just to stay awake and you can’t fully refocus no matter how hard you try. Most of us simply power through, either with coffee or sheer will. But increasingly, research suggests […]

Hidden for over a century, a preserved Tasmanian Tiger head "found in a bucket" may bring the lost species back from extinction

Researchers recover vital RNA from Tasmanian tiger, pushing de-extinction closer to reality.

Island Nation Tuvalu Set to Become the First Country Lost to Climate Change. More Than 80% of the Population Apply to Relocate to Australia Under World's First 'Climate Visa'

Tuvalu will likely become the first nation to vanish because of climate change.

Archaeologists Discover 6,000 Year Old "Victory Pits" That Featured Mass Graves, Severed Limbs, and Torture

Ancient times weren't peaceful by any means.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

A 5,000-Year-Old Cow Tooth Just Changed What We Know About Stonehenge

An ancient tooth reshapes what we know about the monument’s beginnings.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

Researchers finally control the fermentation process that can make or break chocolate.

Rejoice! Walmart's Radioactive Shrimp Are Only a Little Radioactive

You could have a little radioactive shrimp as a treat. (Don't eat any more!)